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Definitions and Terminology

A rectangulation R avoids ⊤ if it does not contain a ⊤
joint. Avoiding ⊢, ⊣, and ⊥ are defined analagously.

Systematic study of pattern avoidance in rectangulations
was started by Merino and Mütze (2021), several models
were solved by Asinowski and Banderier (2023).

Let L be a set of rectangulation patterns and denote by
Rw

n (L) and Rs
n(L) the set of weak and, respectively, strong

rectangulations of size n that avoid all patterns in L.

Our results cover all the (essentially different) cases where
L ⊆ {⊤,⊥,⊢,⊣}.
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First geometric interpretation of sequence, sequence previously appeared in paper examining pattern
avoidance in inversion sequences from Megan Martinez and Carla Savage (2018).
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Asymptotics recently proven in a pre-print from Axel Bacher
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THANK YOU!


