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seperated by a single vertical segment.
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Definitions and Terminology

An integer sequence s = (s1, S2,...,5y,) is called an
inversion sequence if for all 1 <7 <n, we have
0 S S; S 1 — 1.
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Definitions and Terminology

A rectangulation ‘R avoids T if it does not contain a
T joint. Avoiding |-, -, and L are defined analagously.
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Definitions and Terminology

A rectangulation ‘R avoids T if it does not contain a T
joint. Avoiding =, -, and _L are defined analagously.

Systematic study of pattern avoidance in rectangulations
was started by Merino and Miitze (2021), several models
were solved by Asinowski and Banderier (2023).

Let L be a set of rectangulation patterns and denote by
RY(L) and R (L) the set of weak and, respectively, strong
rectangulations of size n that avoid all patterns in L.

Our results cover all the (essentially different) cases where
L CAT, L, 4}
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First geometric interpretation of sequence, sequence previously appeared in paper examining pattern

avoidance in inversion sequences from Megan Martinez and Carla Savage (2018).
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Asymptotics recently proven in a pre-print from Axel Bacher
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Summary

Weak Equivalence Strong Equivalence
T RY(T)| = C, RS (T)| = |1,(110,210,010, 120),
T, L IRY(T, L) =271 Bijection to rushed Dyck paths
Tk R, (T,F)| = 27!
T, 1. F R, (T,L,F)=n
T, L, -, IR, (T, L,F, )] =2
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[Ry(T, L) =21

Bijection to rushed Dyck paths

IR, (T,F)|=2n"1

R, (T,L.F)=n

R, (T, L,k )] =2

THANK YOU!
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