

T-AVOIDING RECTANGULATIONS, INVERSION SEQUENCES, AND DYCK PATHS

Michaela A. Polley¹ (Alpen-Adria-Universität Klagenfurt)

joint work with Andrei Asinowski² (Alpen-Adria-Universität Klagenfurt)

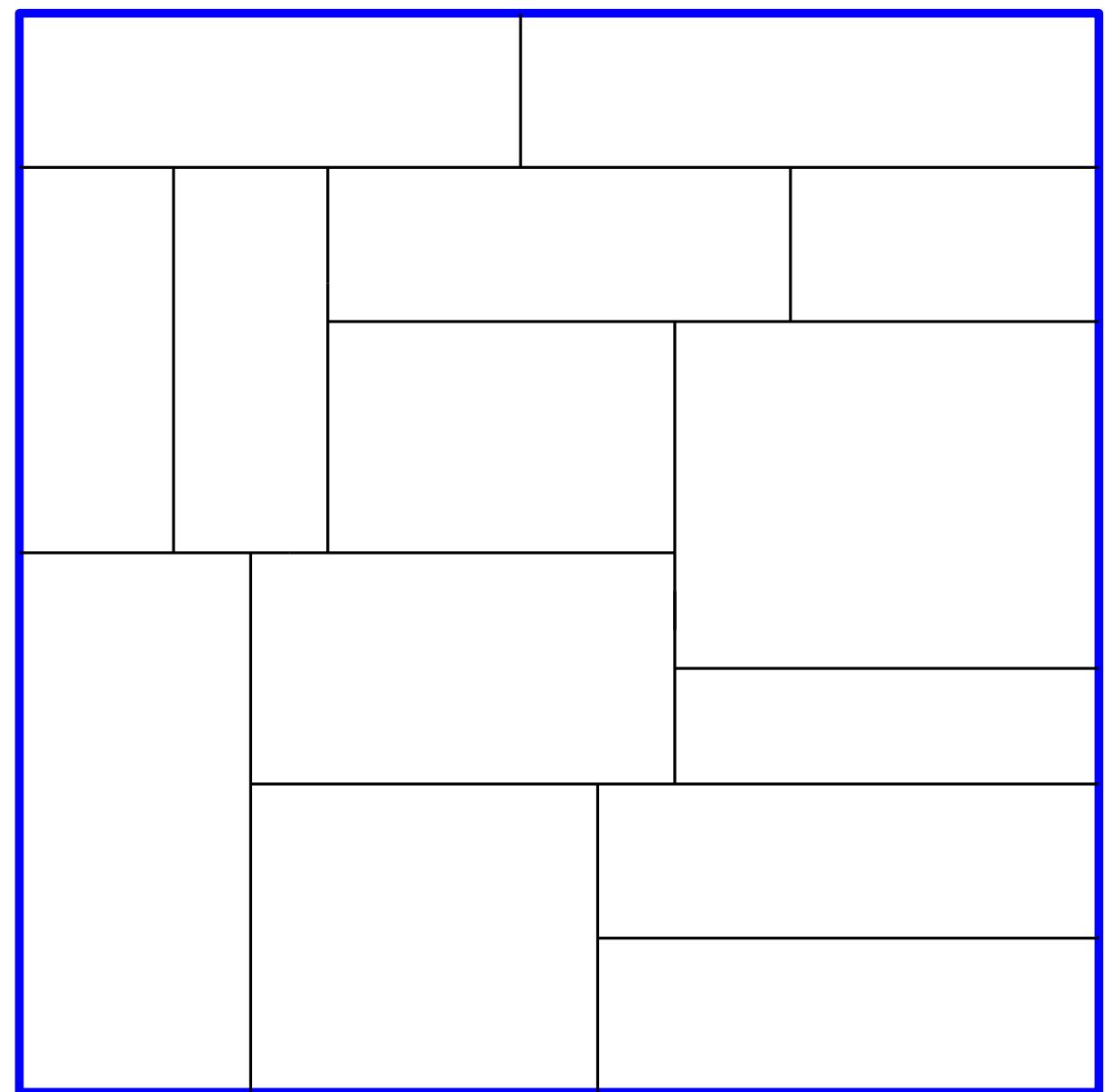
Permutation Patterns 2024
Moscow, ID, USA
June 10, 2024

¹ Supported by Fulbright Austria and Austrian Marshall Plan Foundation

² Supported by FWF – Austrian Science Fund

Definitions and Terminology

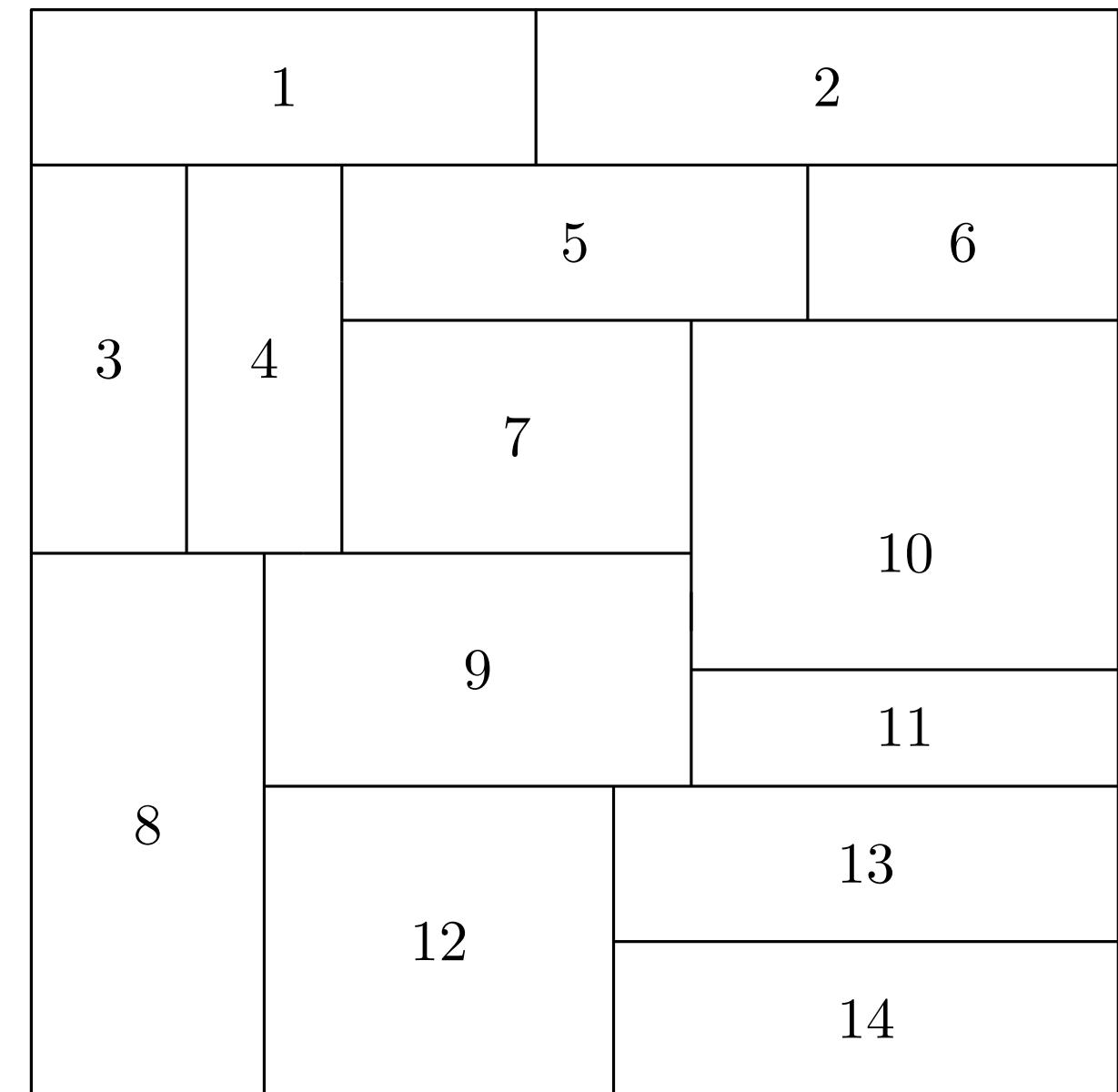
A *rectangulation* \mathcal{R} is a partition of a rectangle R into a finite number of rectangles such that there are no + joints.



Definitions and Terminology

A *rectangulation* \mathcal{R} is a partition of a rectangle R into a finite number of rectangles such that there are no + joints.

The *size* of \mathcal{R} is the number of interior rectangles.

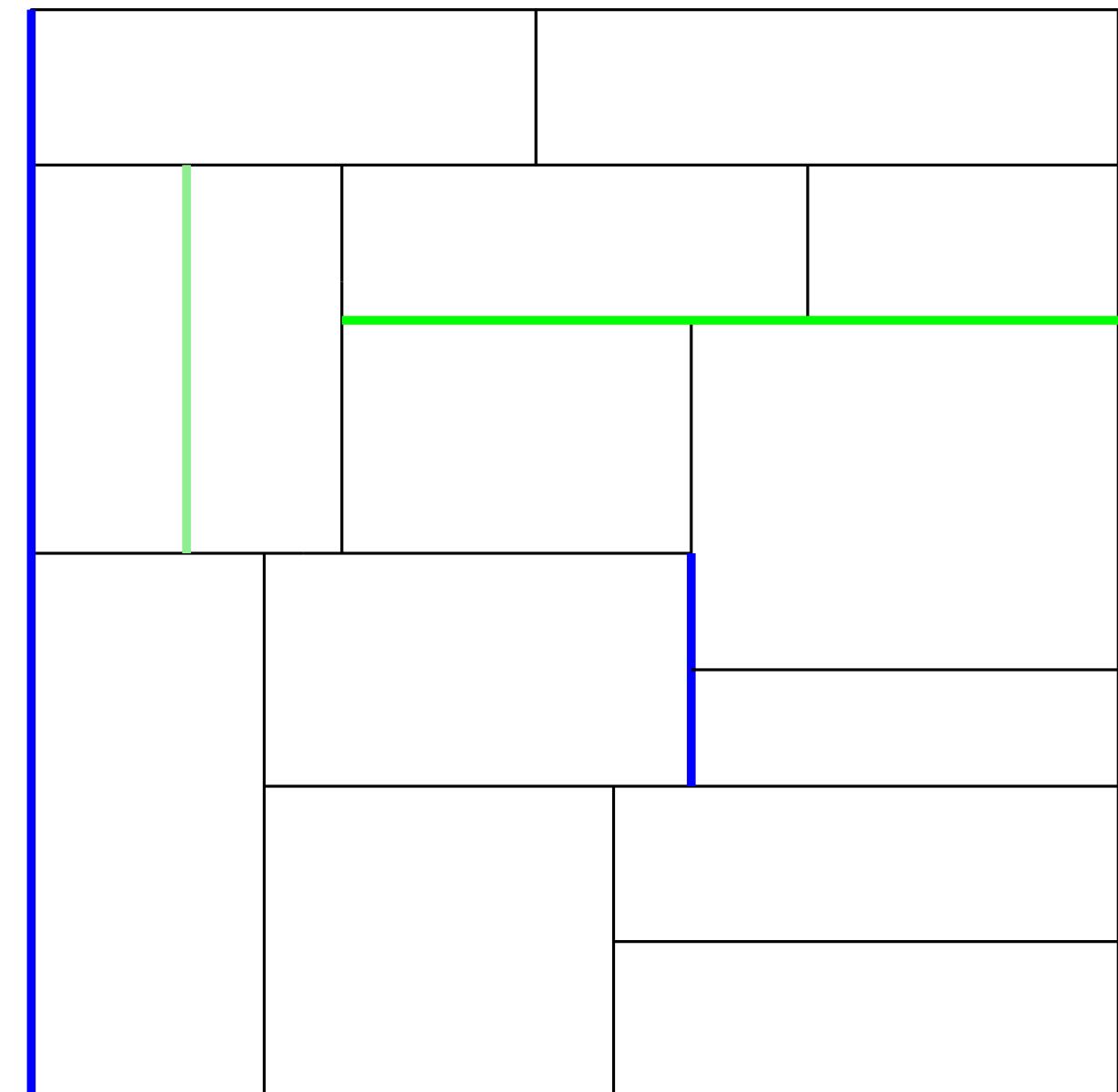


Definitions and Terminology

A *rectangulation* \mathcal{R} is a partition of a rectangle R into a finite number of rectangles such that there are no $+$ joints.

The *size* of \mathcal{R} is the number of interior rectangles.

A *segment* in \mathcal{R} is a maximal union of rectangle edges which form a straight line (and not an edge of R).



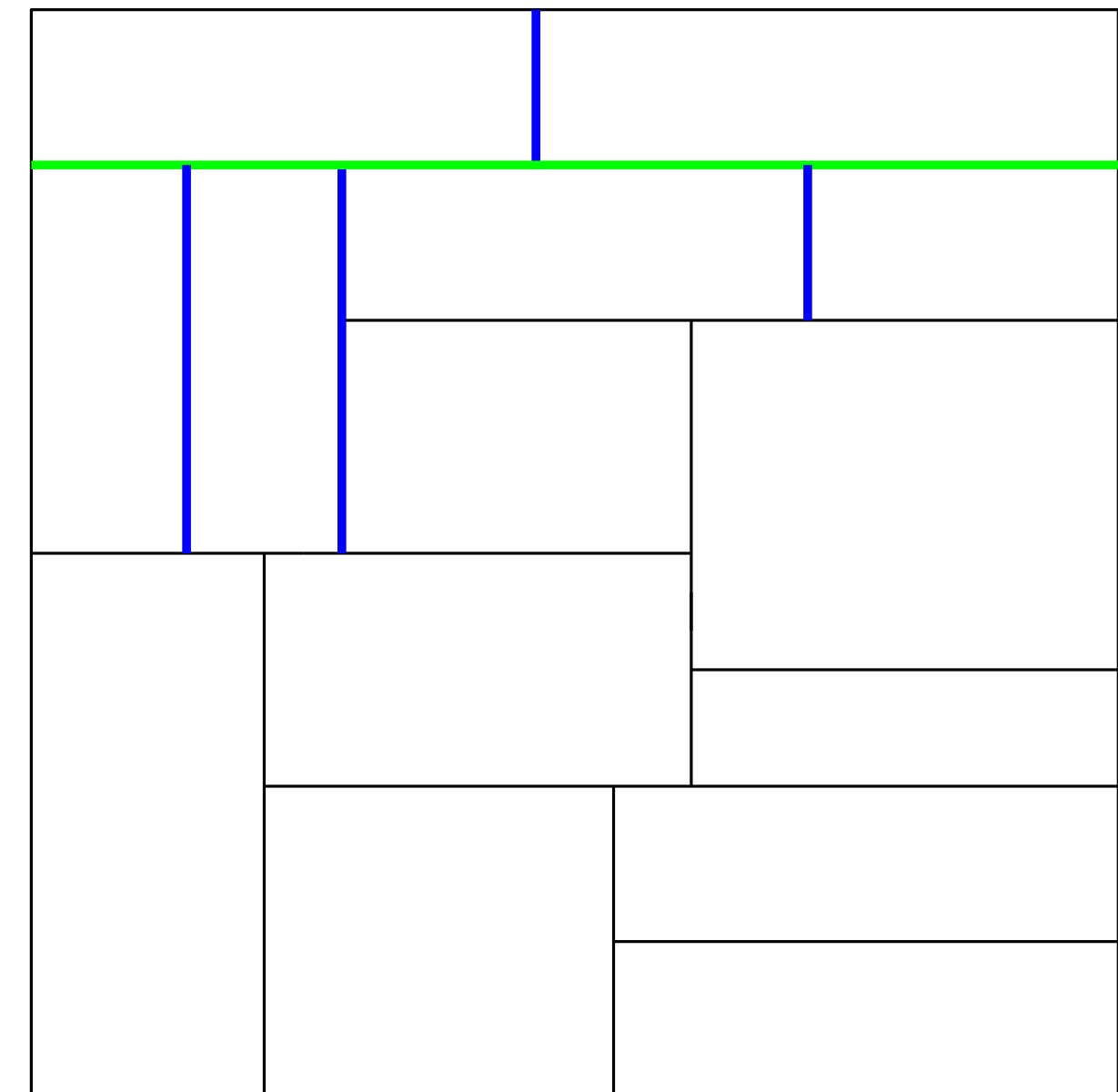
Definitions and Terminology

A *rectangulation* \mathcal{R} is a partition of a rectangle R into a finite number of rectangles such that there are no $+$ joints.

The *size* of \mathcal{R} is the number of interior rectangles.

A *segment* in \mathcal{R} is a maximal union of rectangle edges which form a straight line (and not an edge of R).

The *neighbors* of a segment c are the perpendicular segments which have an endpoint on c .



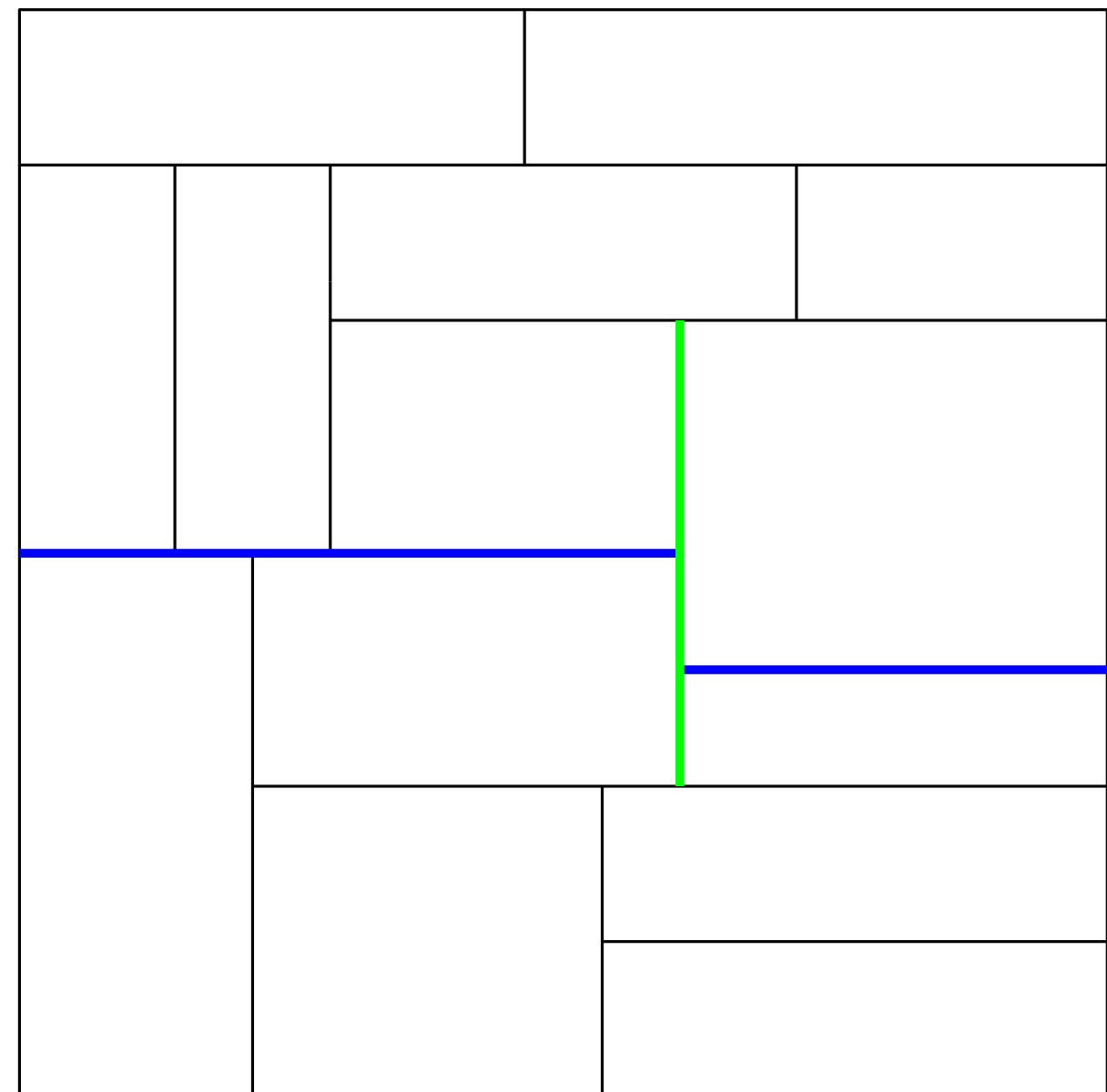
Definitions and Terminology

A *rectangulation* \mathcal{R} is a partition of a rectangle R into a finite number of rectangles such that there are no $+$ joints.

The *size* of \mathcal{R} is the number of interior rectangles.

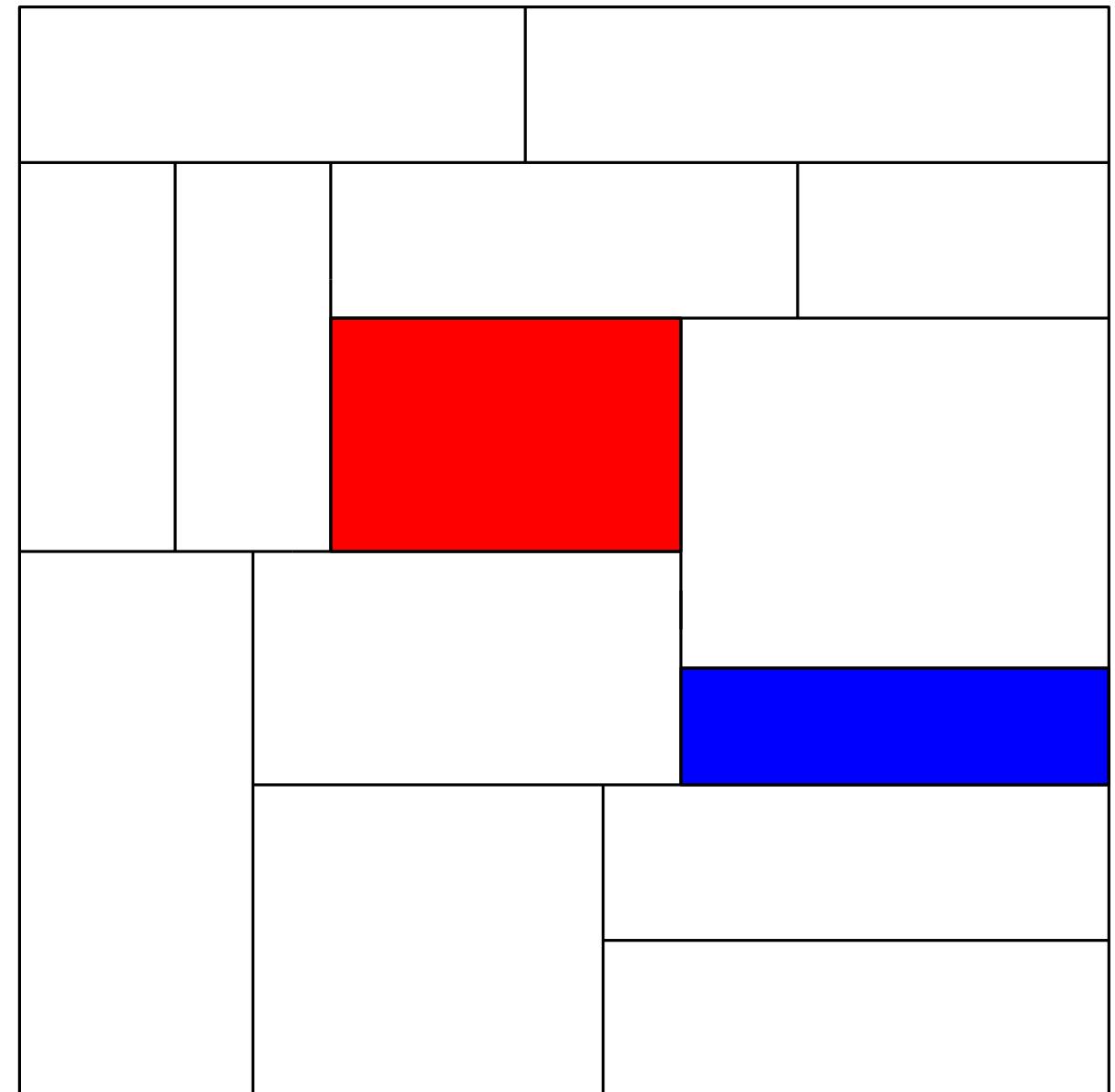
A *segment* in \mathcal{R} is a maximal union of rectangle edges which form a straight line (and not an edge of R).

The *neighbors* of a segment c are the perpendicular segments which have an endpoint on c .



Definitions and Terminology

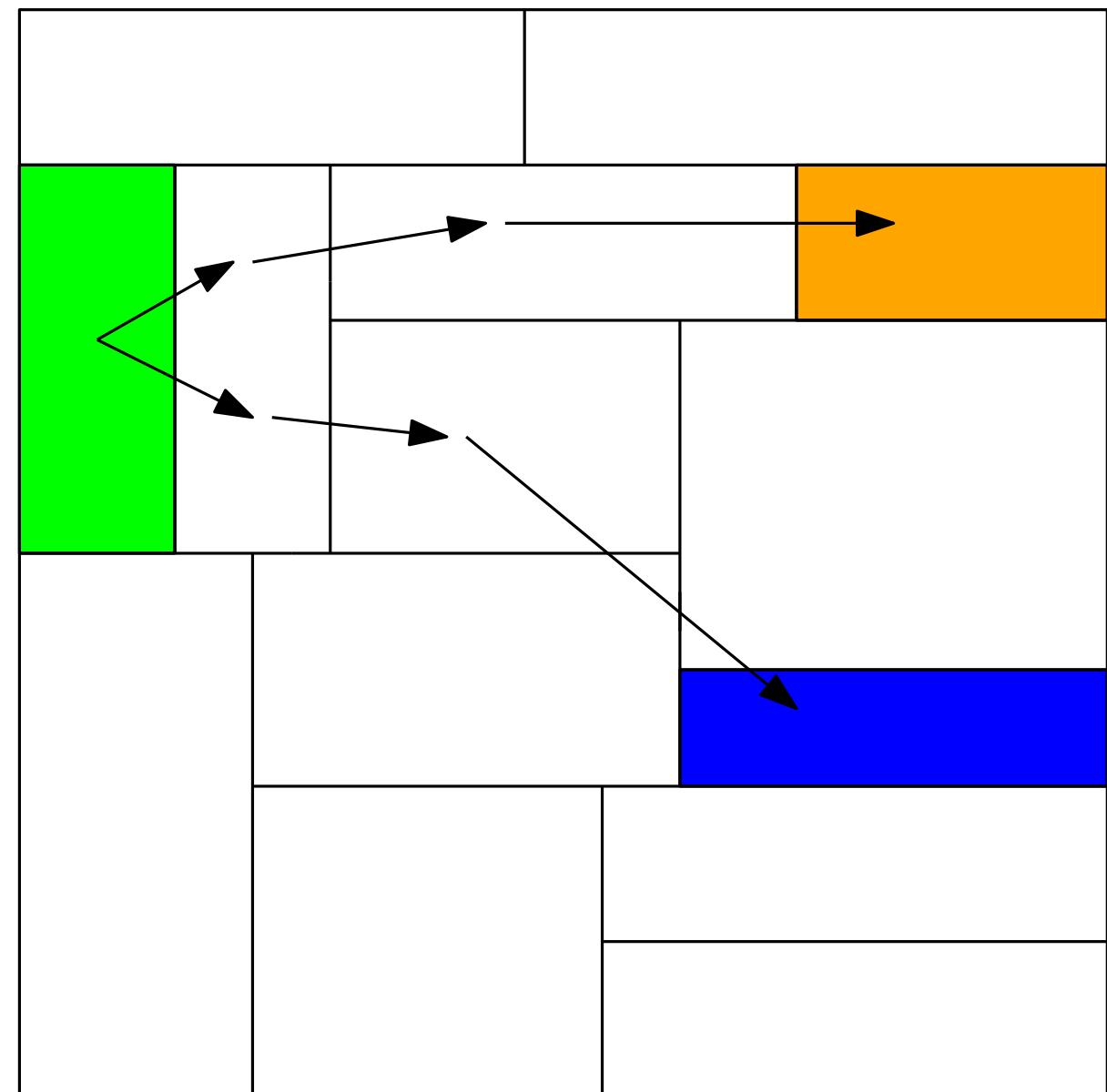
Within \mathcal{R} , two rectangles are *left/right neighbors* if they are separated by a single vertical segment.



Definitions and Terminology

Within \mathcal{R} , rectangles r and s are *left/right neighbors* if they are separated by a single vertical segment.

Rectangle r is *left of* rectangle s if they are part of a sequence of left/right neighbors.

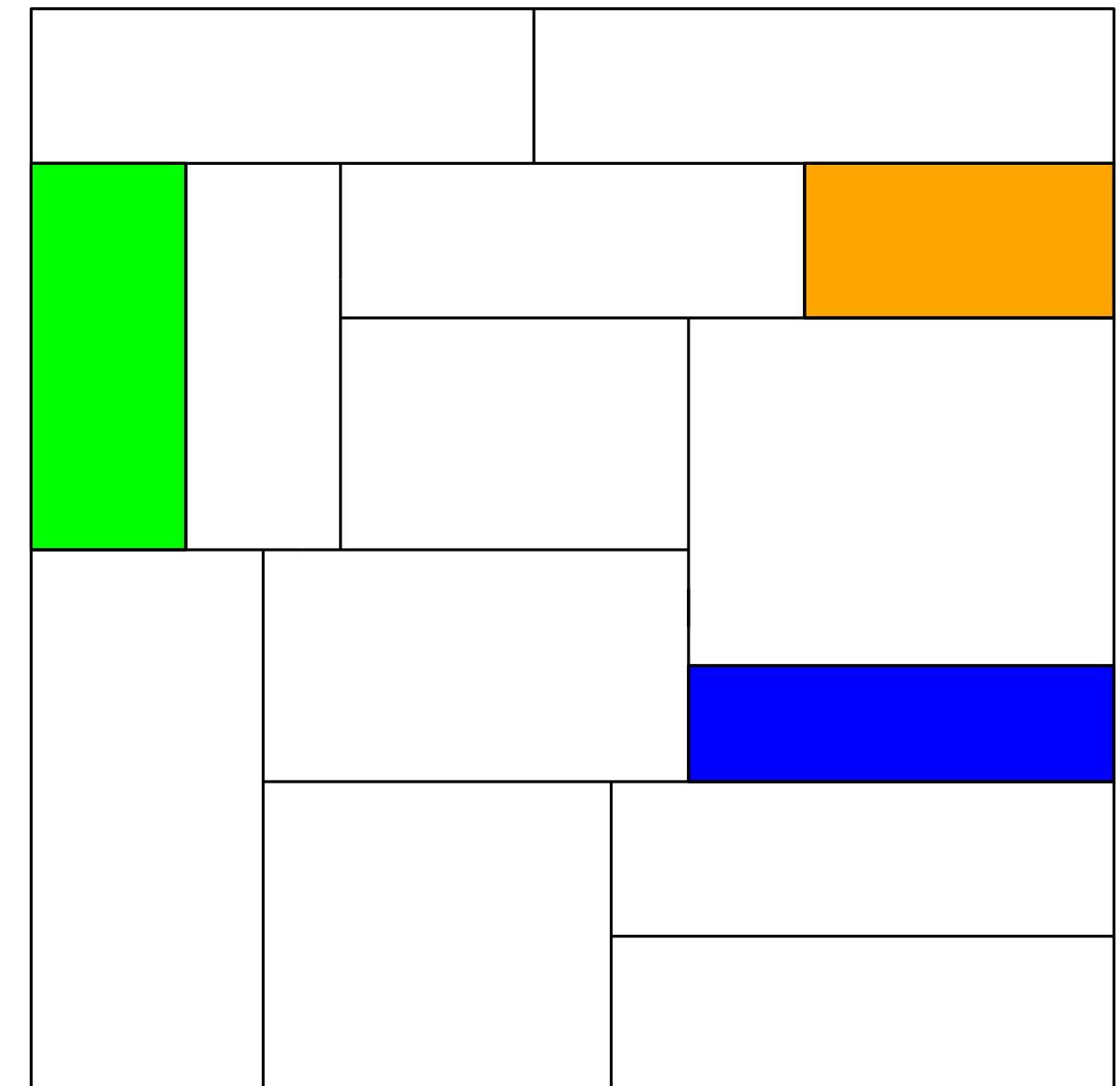


Definitions and Terminology

Within \mathcal{R} , rectangles r and s are *left/right neighbors* if they are separated by a single vertical segment.

Rectangle r is *left of* rectangle s if they are part of a sequence of left/right neighbors.

Top/bottom neighbors and *above/below* relations are defined analogously.



Definitions and Terminology

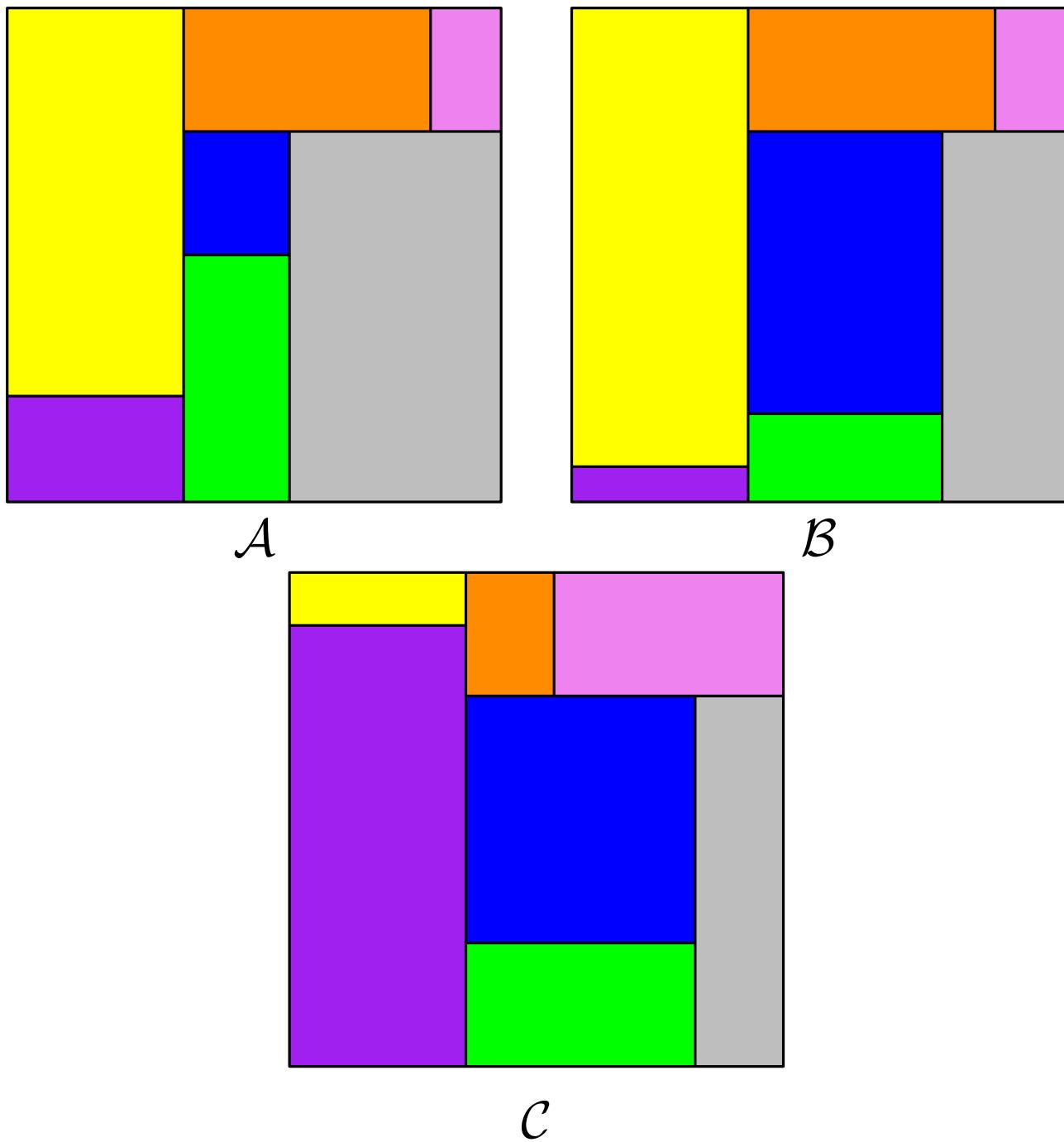
Within \mathcal{R} , rectangles r and s are *left/right neighbors* if they are separated by a single vertical segment.

Rectangle r is *left of* rectangle s if they are part of a sequence of left/right neighbors.

Top/bottom neighbors and *above/below* relations are defined analogously.

Rectangulations are *weakly equivalent* if they preserve left/right and above/below relations.

They are *strongly equivalent* if they also preserve contact between rectangles.



Definitions and Terminology

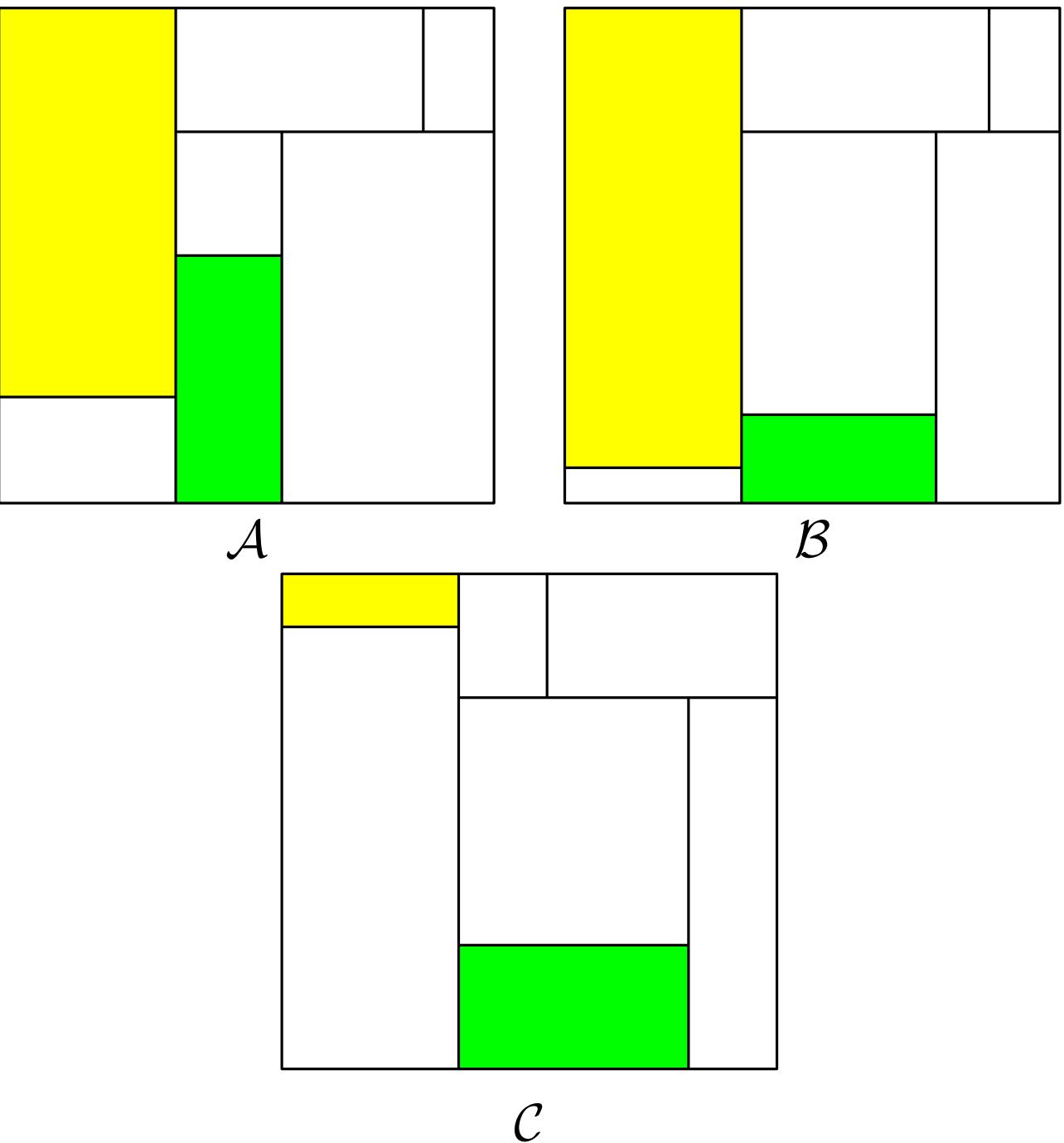
Within \mathcal{R} , rectangles r and s are *left/right neighbors* if they are separated by a single vertical segment.

Rectangle r is *left of* rectangle s if they are part of a sequence of left/right neighbors.

Top/bottom neighbors and *above/below* relations are defined analogously.

Rectangulations are *weakly equivalent* if they preserve left/right and above/below relations.

They are *strongly equivalent* if they also preserve contact between rectangles.



Definitions and Terminology

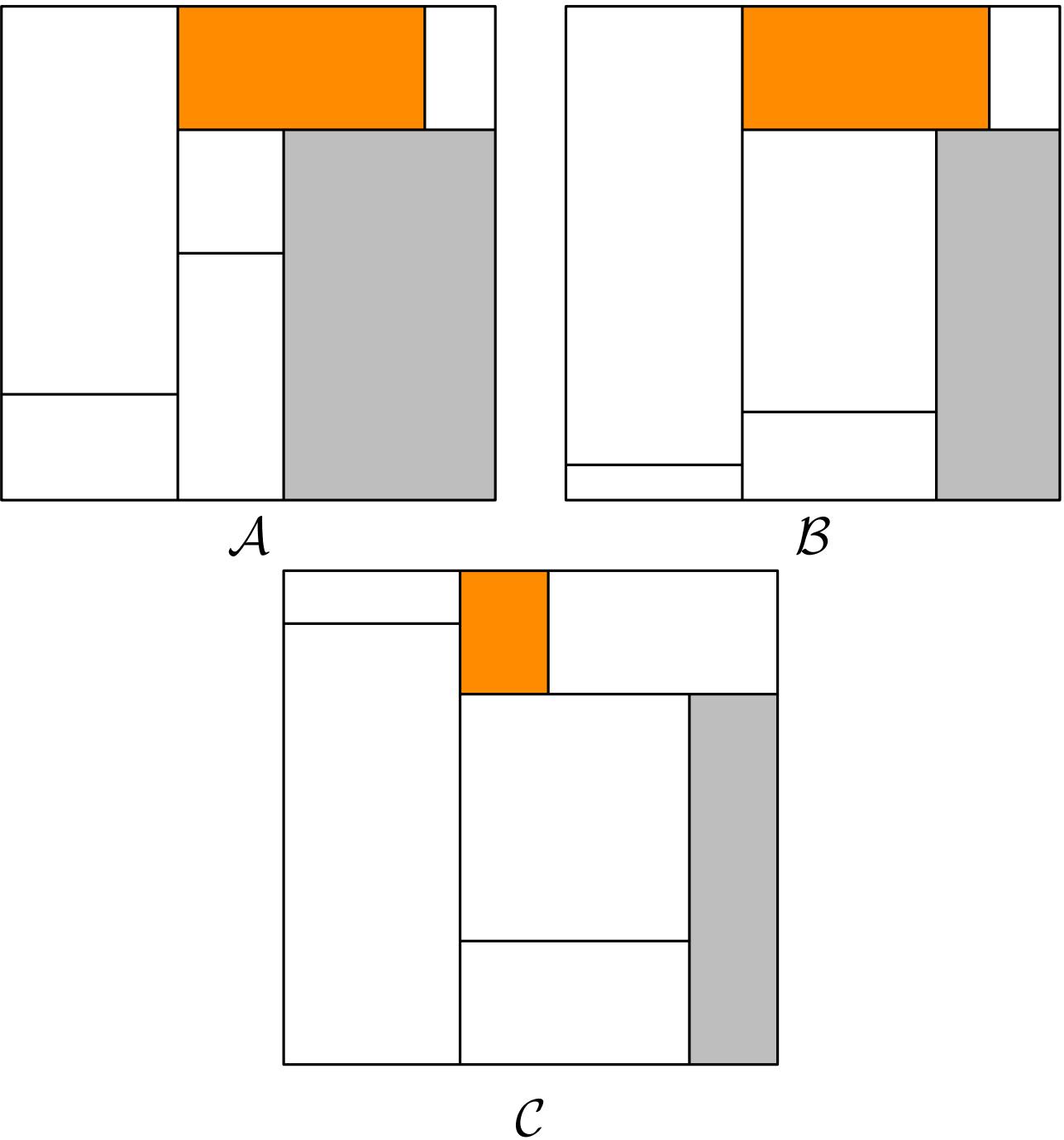
Within \mathcal{R} , rectangles r and s are *left/right neighbors* if they are separated by a single vertical segment.

Rectangle r is *left of* rectangle s if they are part of a sequence of left/right neighbors.

Top/bottom neighbors and *above/below* relations are defined analogously.

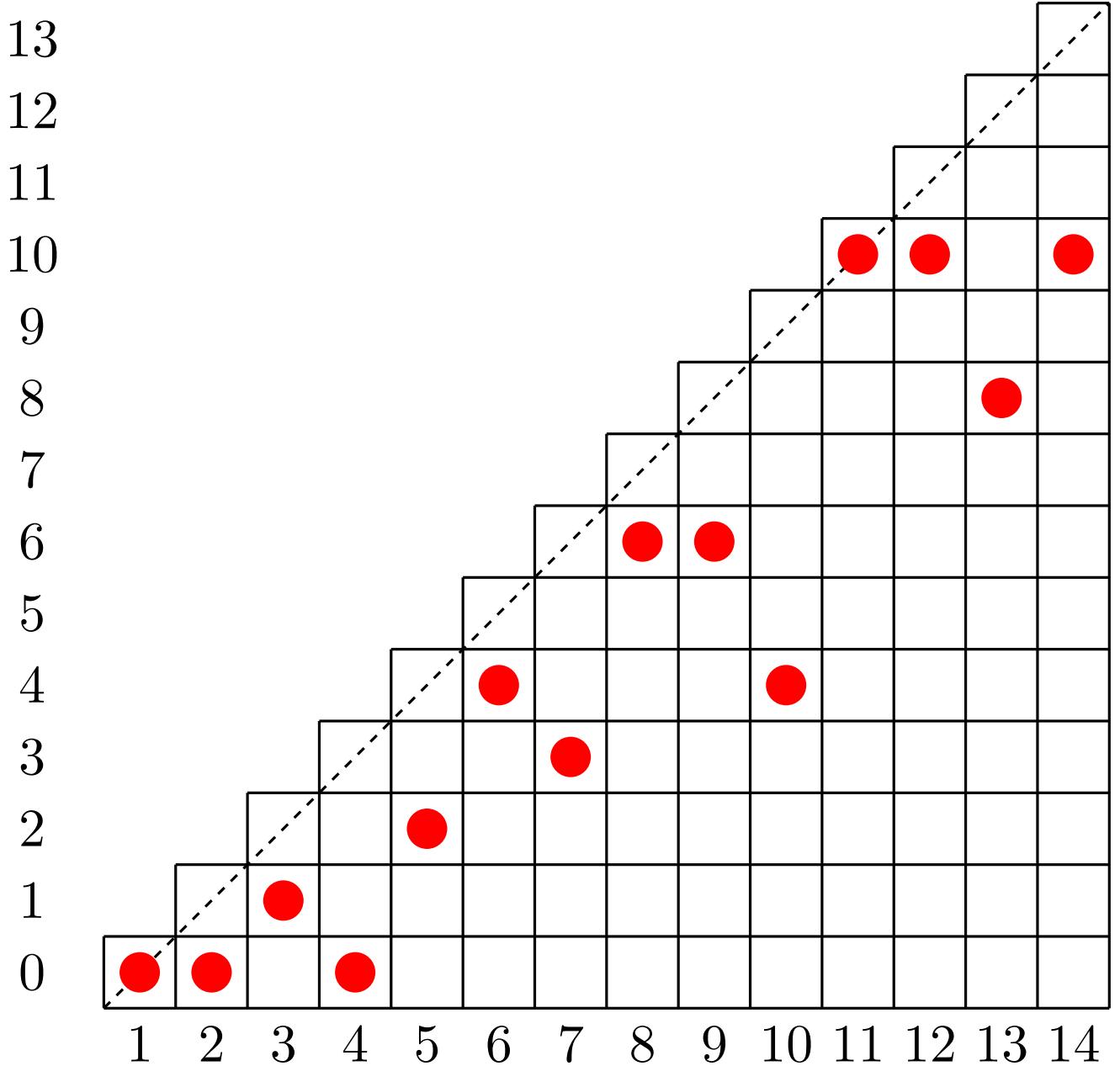
Rectangulations are *weakly equivalent* if they preserve left/right and above/below relations.

They are *strongly equivalent* if they also preserve contact between rectangles.



Definitions and Terminology

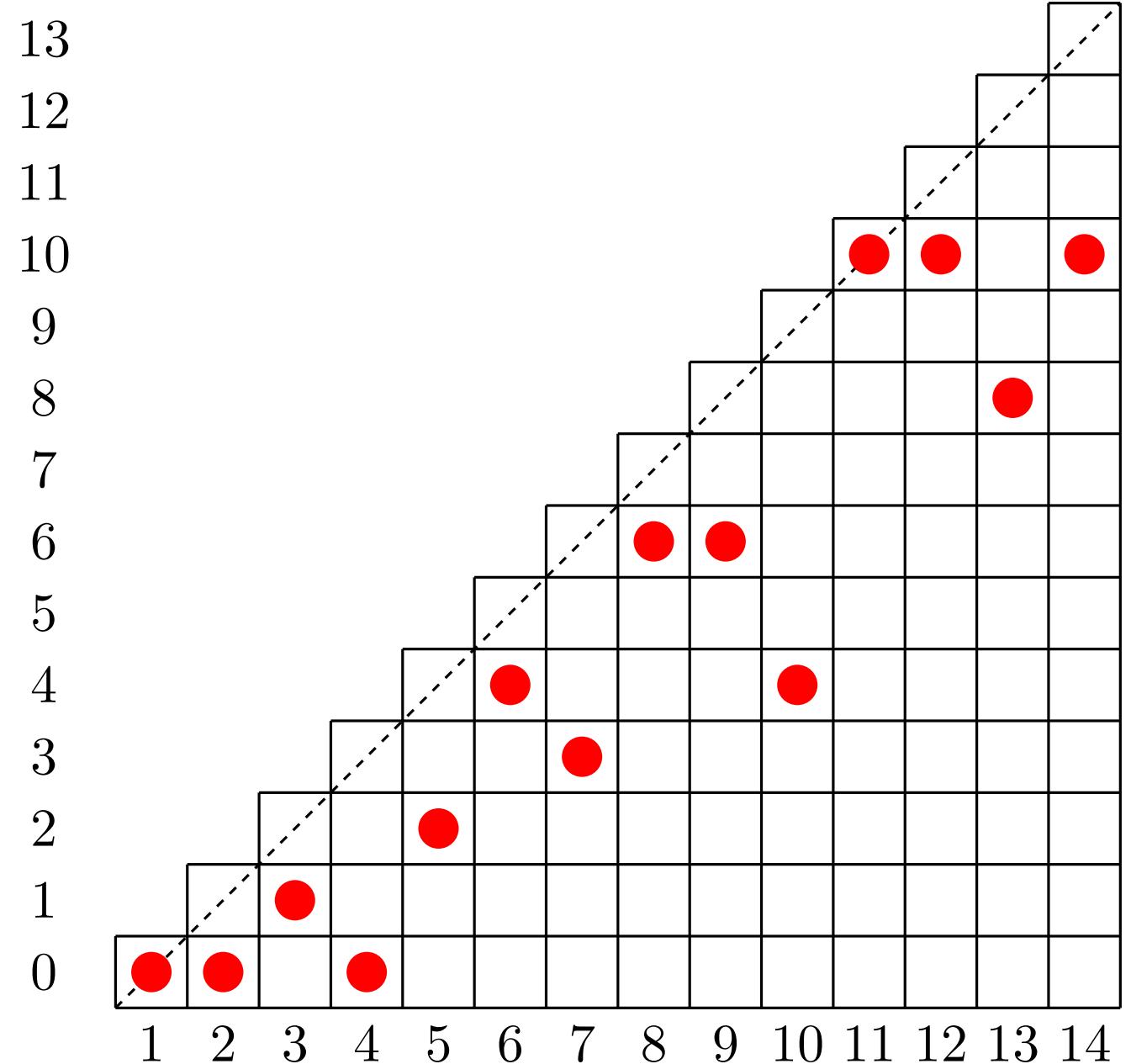
An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.



Definitions and Terminology

An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

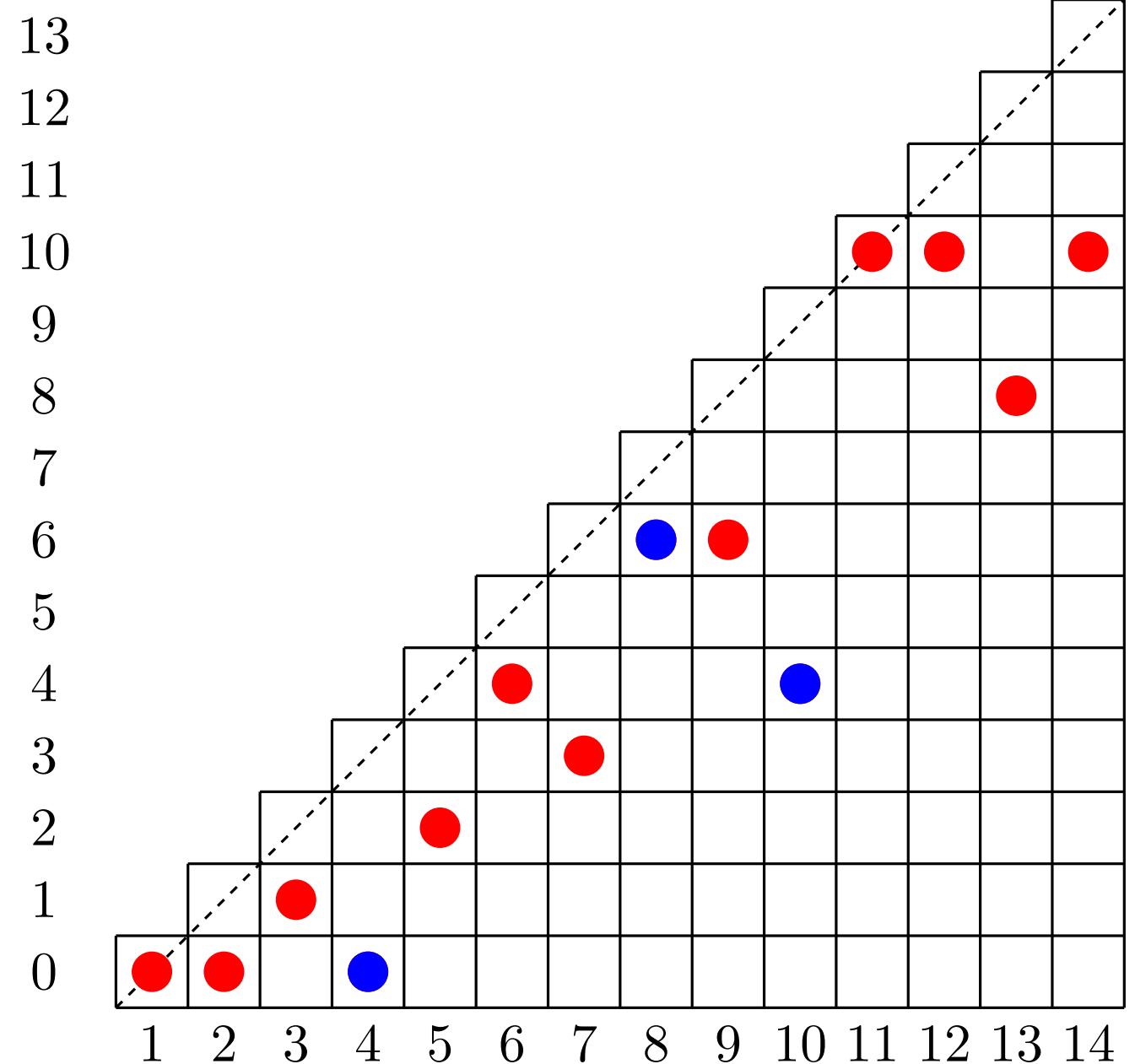
We say s avoids a pattern t if there is no subsequence of s which is order isomorphic to t .



Definitions and Terminology

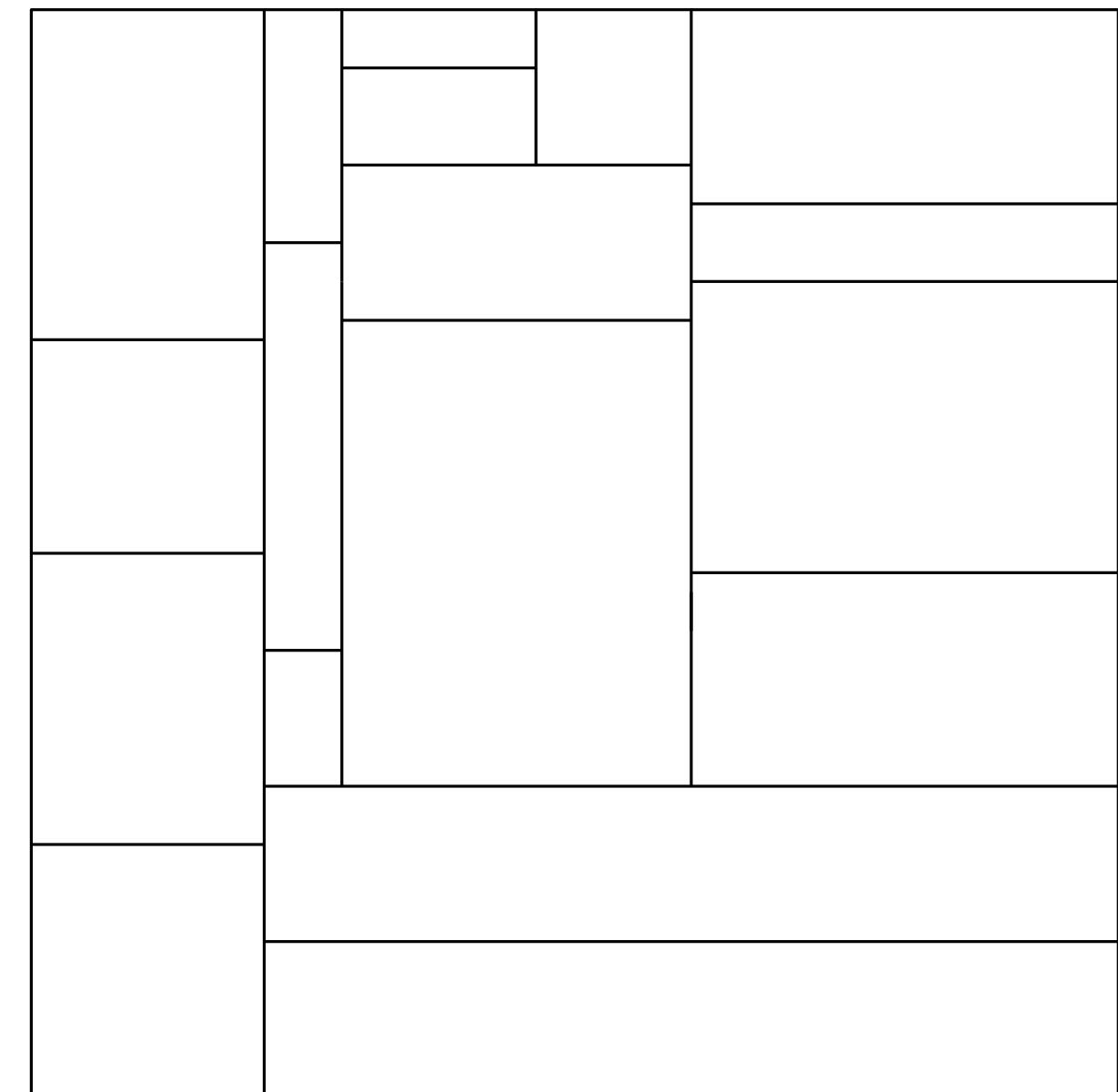
An integer sequence $s = (s_1, s_2, \dots, s_n)$ is called an *inversion sequence* if for all $1 \leq i \leq n$, we have $0 \leq s_i \leq i - 1$.

We say s avoids a pattern t if there is no subsequence of s which is order isomorphic to t .



Definitions and Terminology

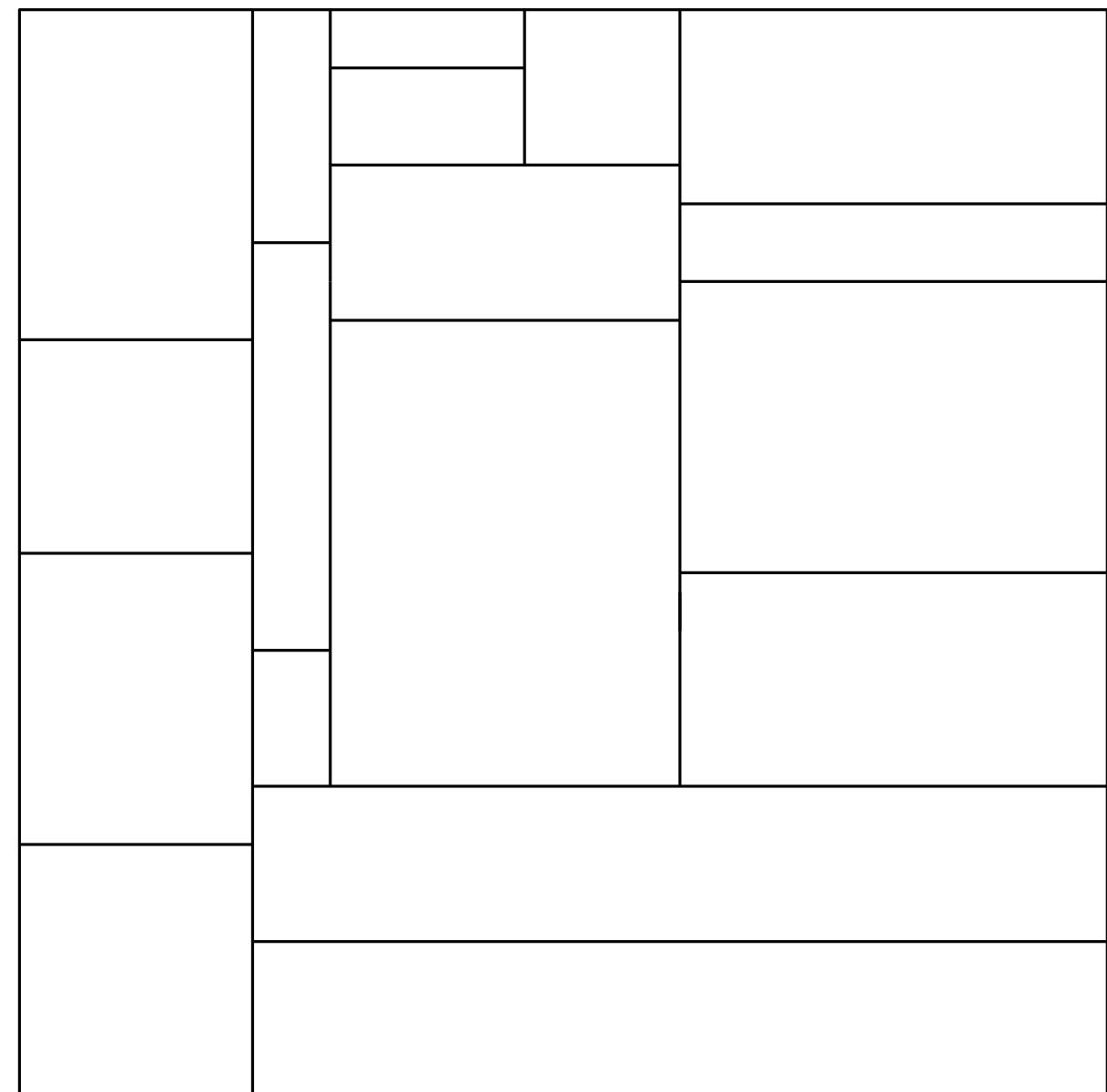
A rectangulation \mathcal{R} avoids \top if it does not contain a \top joint. Avoiding \vdash , \dashv , and \perp are defined analogously.



Definitions and Terminology

A rectangulation \mathcal{R} avoids \top if it does not contain a \top joint. Avoiding \vdash , \dashv , and \perp are defined analogously.

Systematic study of pattern avoidance in rectangulations was started by Merino and Mütze (2021), several models were solved by Asinowski and Banderier (2023).



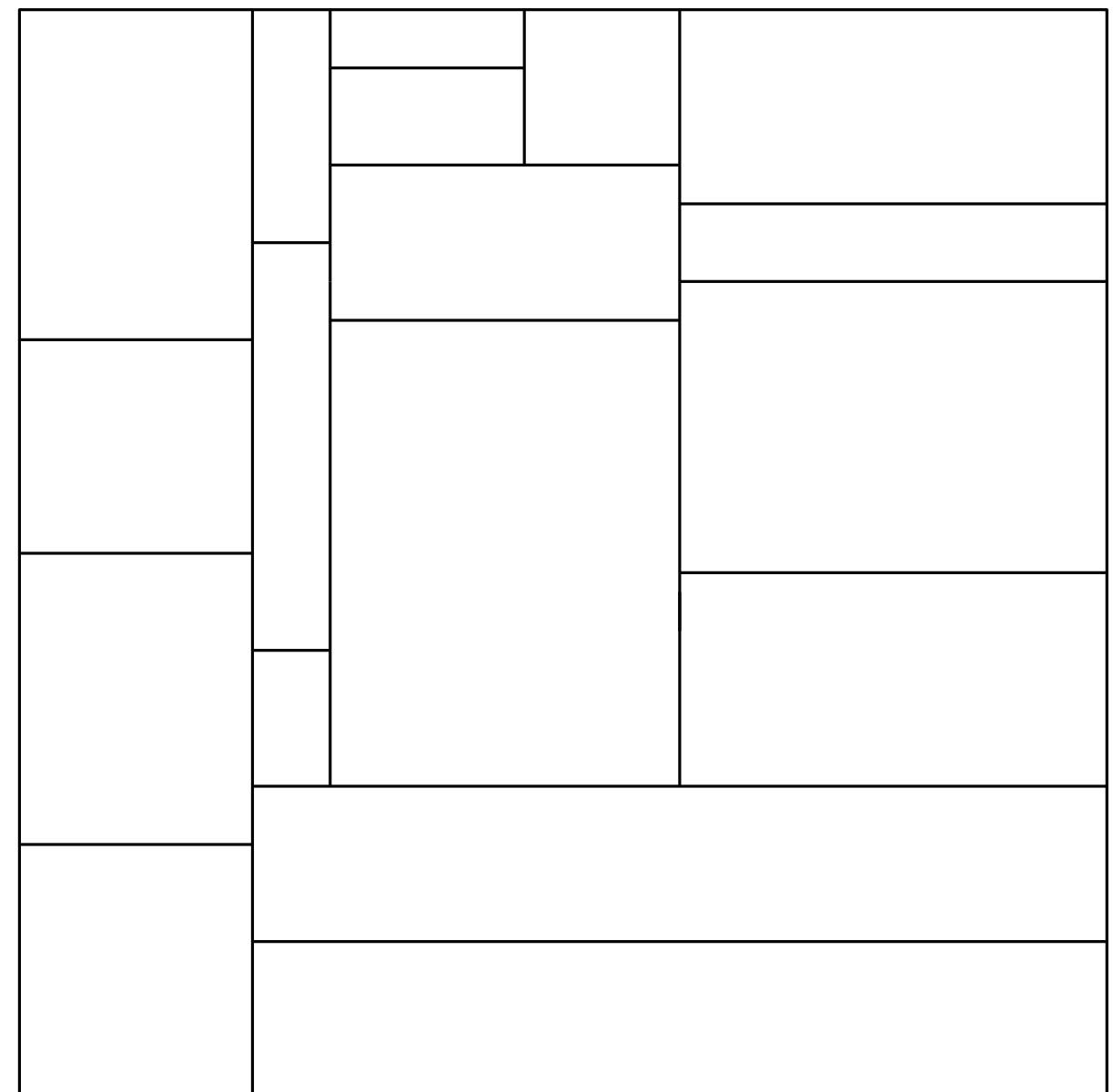
Definitions and Terminology

A rectangulation \mathcal{R} avoids \top if it does not contain a \top joint. Avoiding \vdash , \dashv , and \perp are defined analogously.

Systematic study of pattern avoidance in rectangulations was started by Merino and Mütze (2021), several models were solved by Asinowski and Banderier (2023).

Let L be a set of rectangulation patterns and denote by $R_n^w(L)$ and $R_n^s(L)$ the set of weak and, respectively, strong rectangulations of size n that avoid all patterns in L .

Our results cover all the (essentially different) cases where $L \subseteq \{\top, \perp, \vdash, \dashv\}$.



Outline

—● Definitions and Terminology ●—

Outline

—• Definitions and Terminology •—

- T -avoiding rectangulations (weak and strong equivalence)

Outline

—• Definitions and Terminology •—

- \top –avoiding rectangulations (weak and strong equivalence)
- (\top, \perp) –avoiding rectangulations (weak and strong equivalence)

Outline

—• Definitions and Terminology •—

- \top –avoiding rectangulations (weak and strong equivalence)
- (\top, \perp) –avoiding rectangulations (weak and strong equivalence)
- (\top, \vdash) –avoiding rectangulations

Outline

—• Definitions and Terminology •—

- \top –avoiding rectangulations (weak and strong equivalence)
- (\top, \perp) –avoiding rectangulations (weak and strong equivalence)
- (\top, \vdash) –avoiding rectangulations
- (\top, \perp, \vdash) –avoiding rectangulations

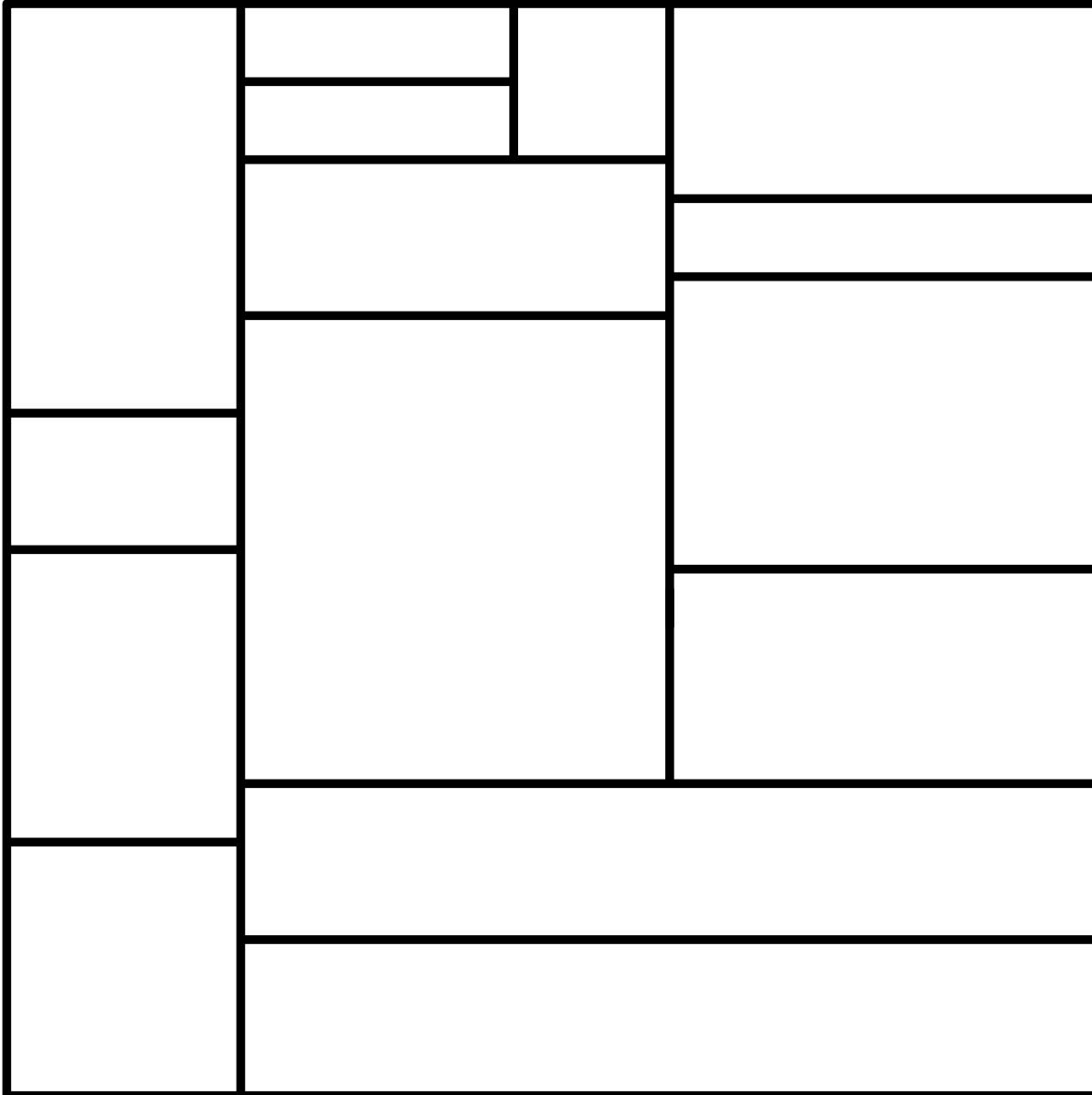
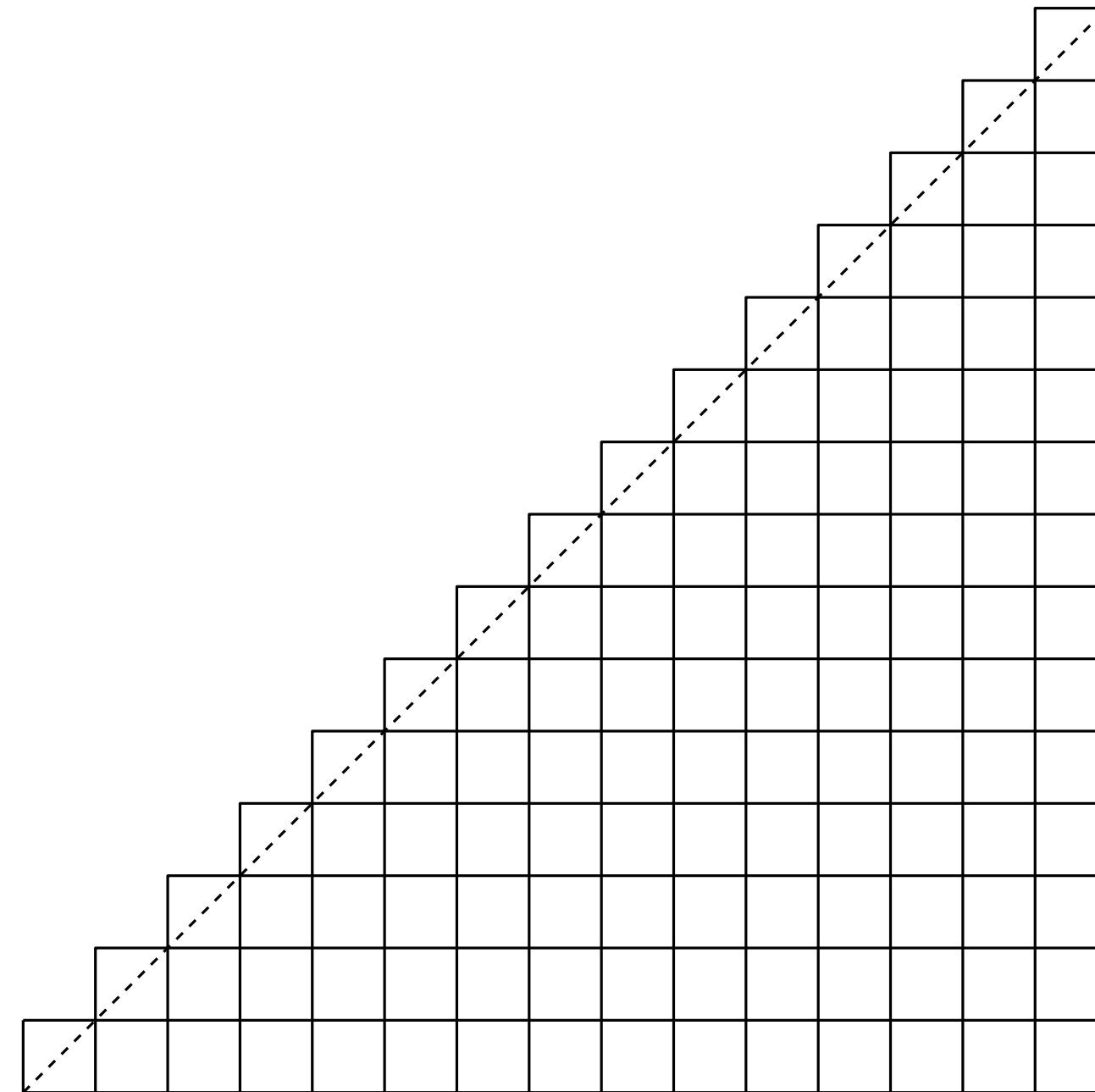
Outline

—• Definitions and Terminology •—

- \top —avoiding rectangulations (weak and strong equivalence)
- (\top, \perp) —avoiding rectangulations (weak and strong equivalence)
- (\top, \vdash) —avoiding rectangulations
- (\top, \perp, \vdash) —avoiding rectangulations
- $(\top, \perp, \vdash, \dashv)$ —avoiding rectangulations

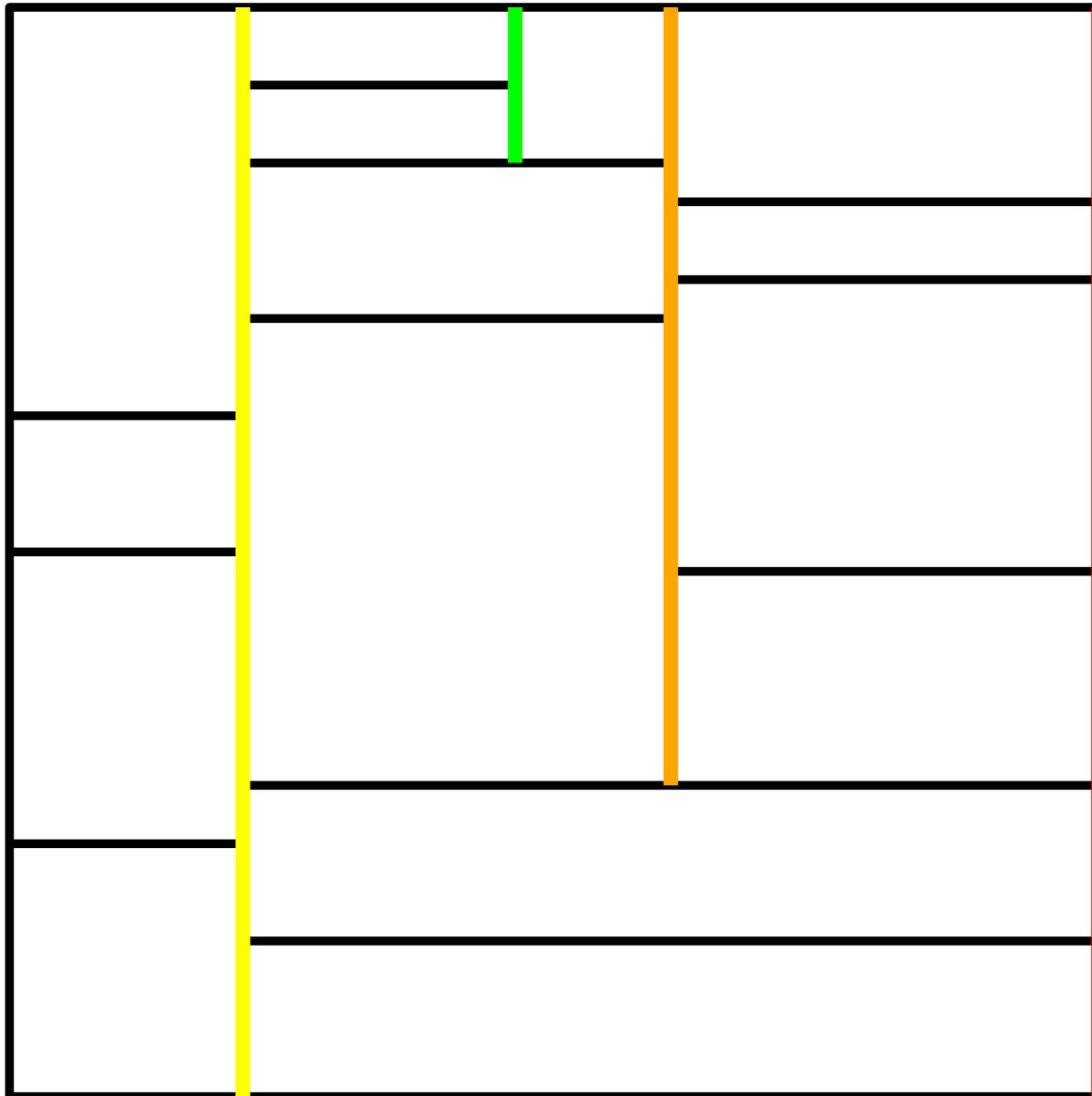
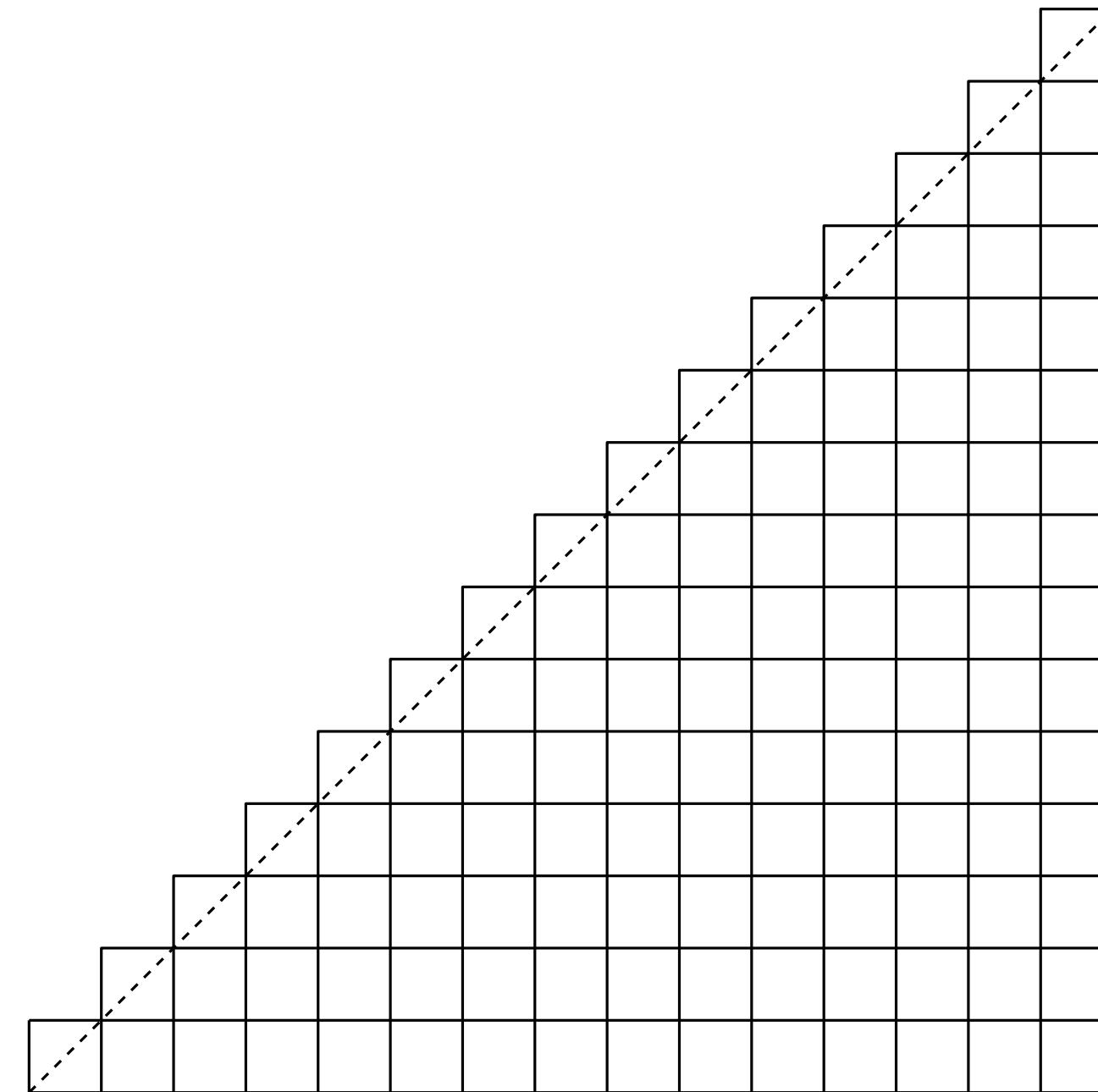
Theorem 1 (Williams): $|R_n^w(\top)| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



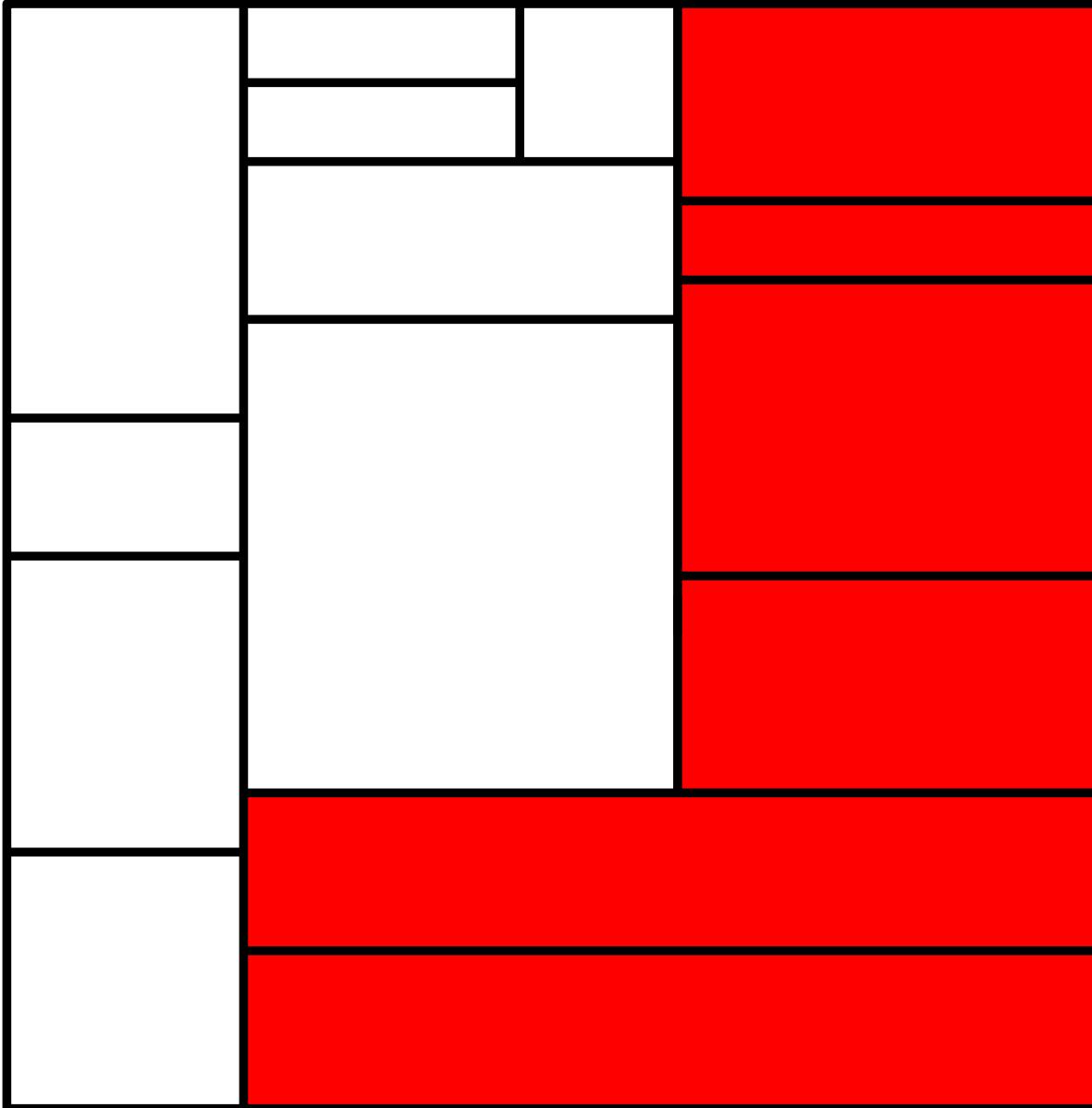
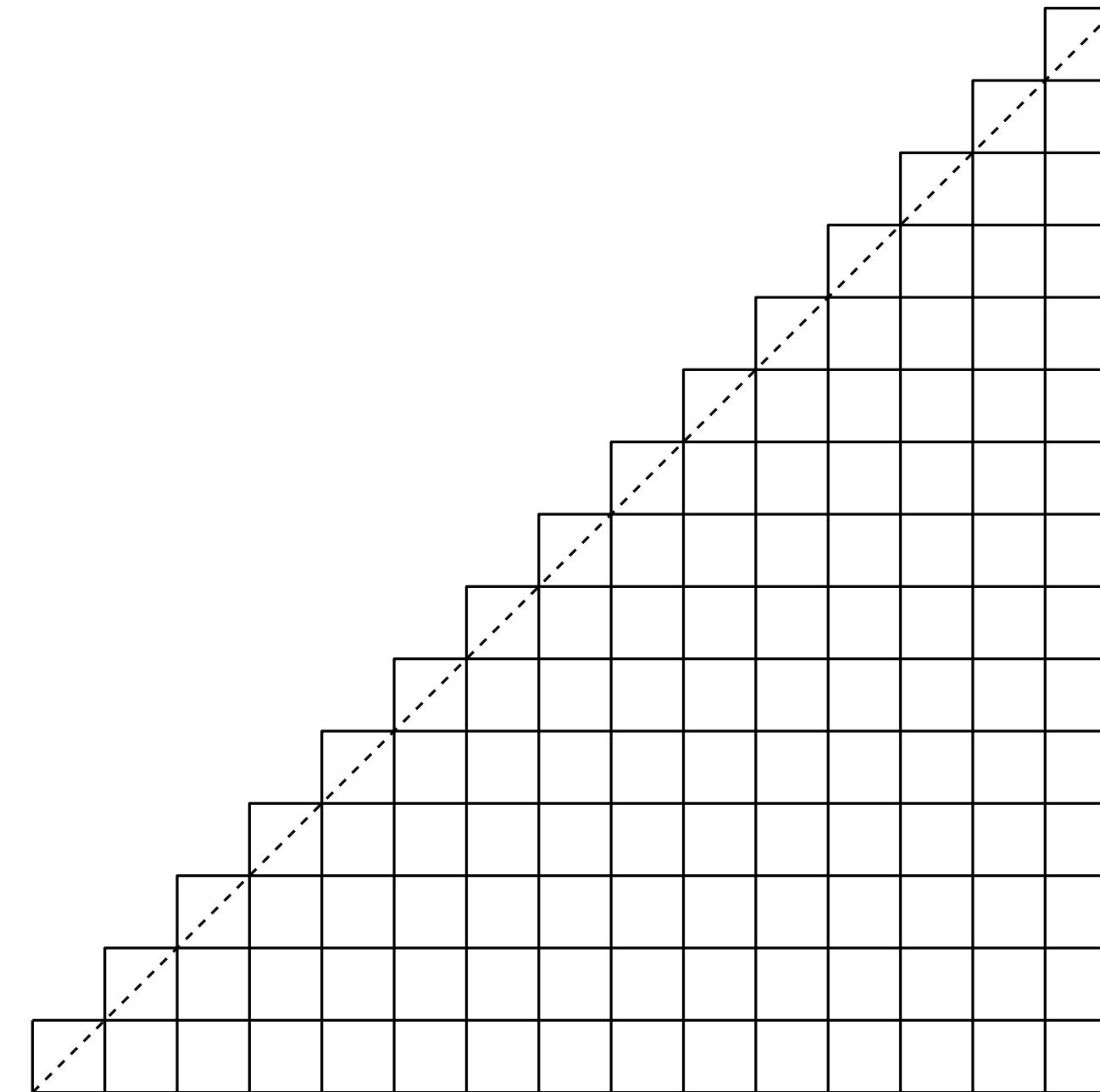
Theorem 1 (Williams): $|R_n^w(\top)| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



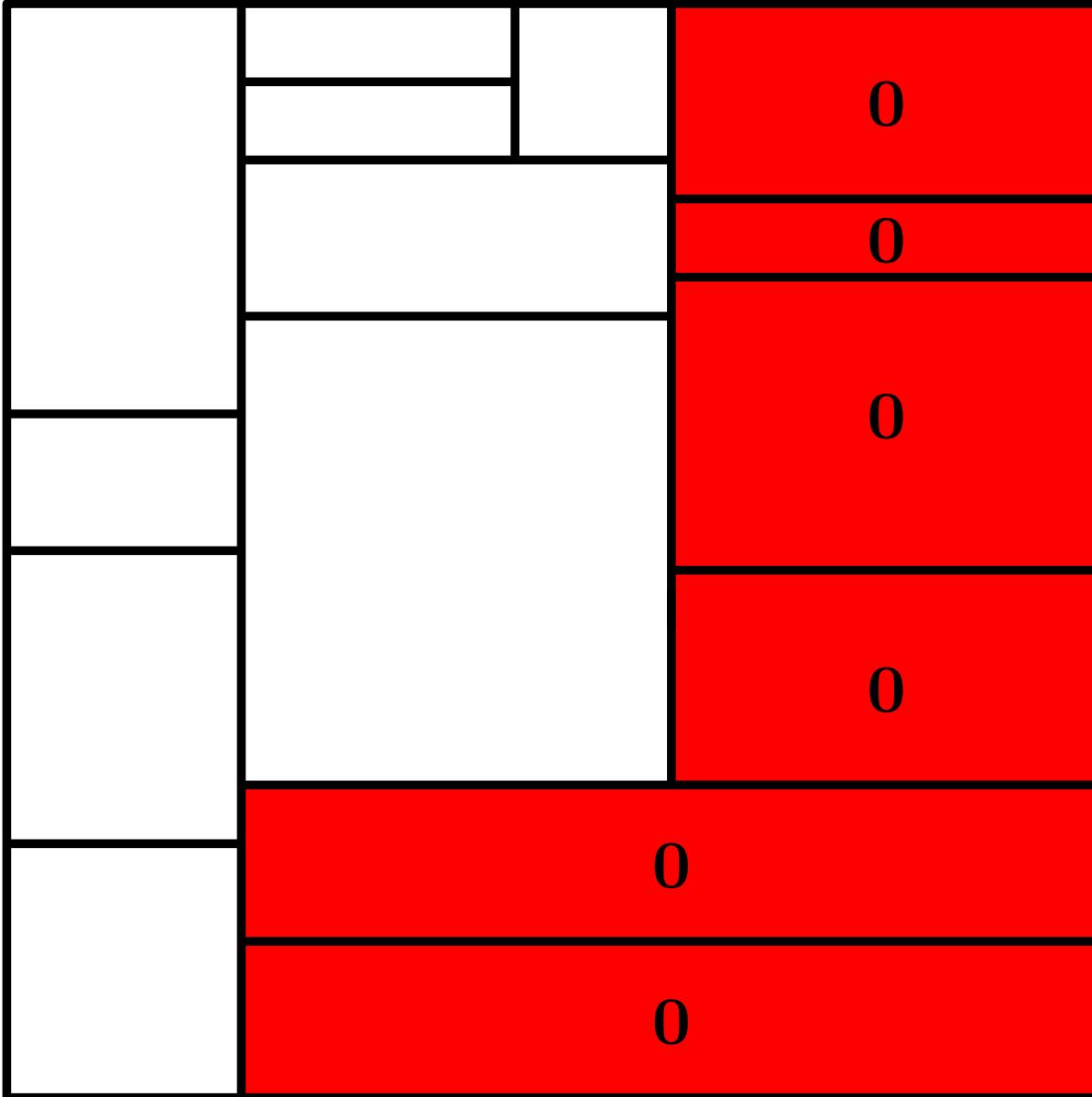
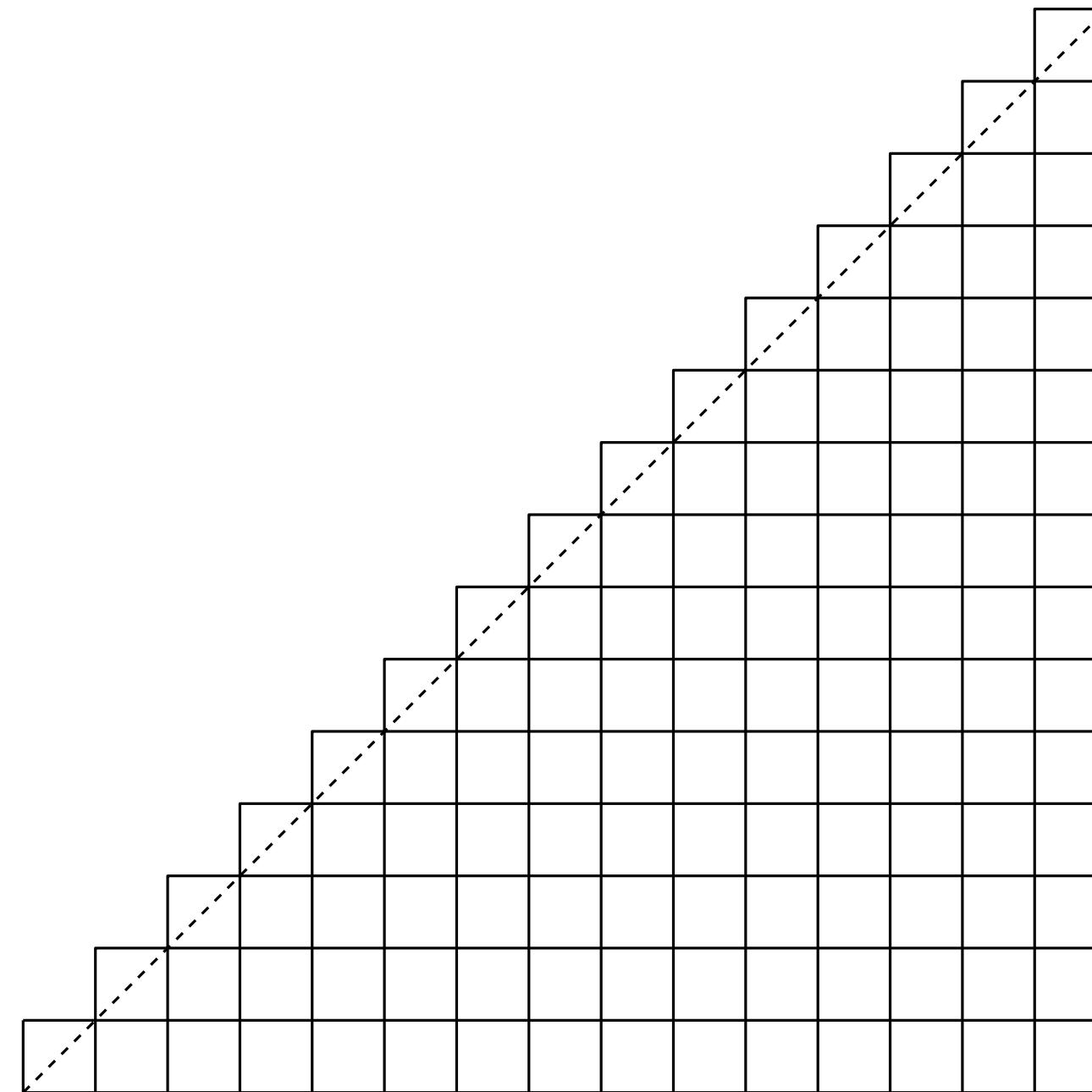
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



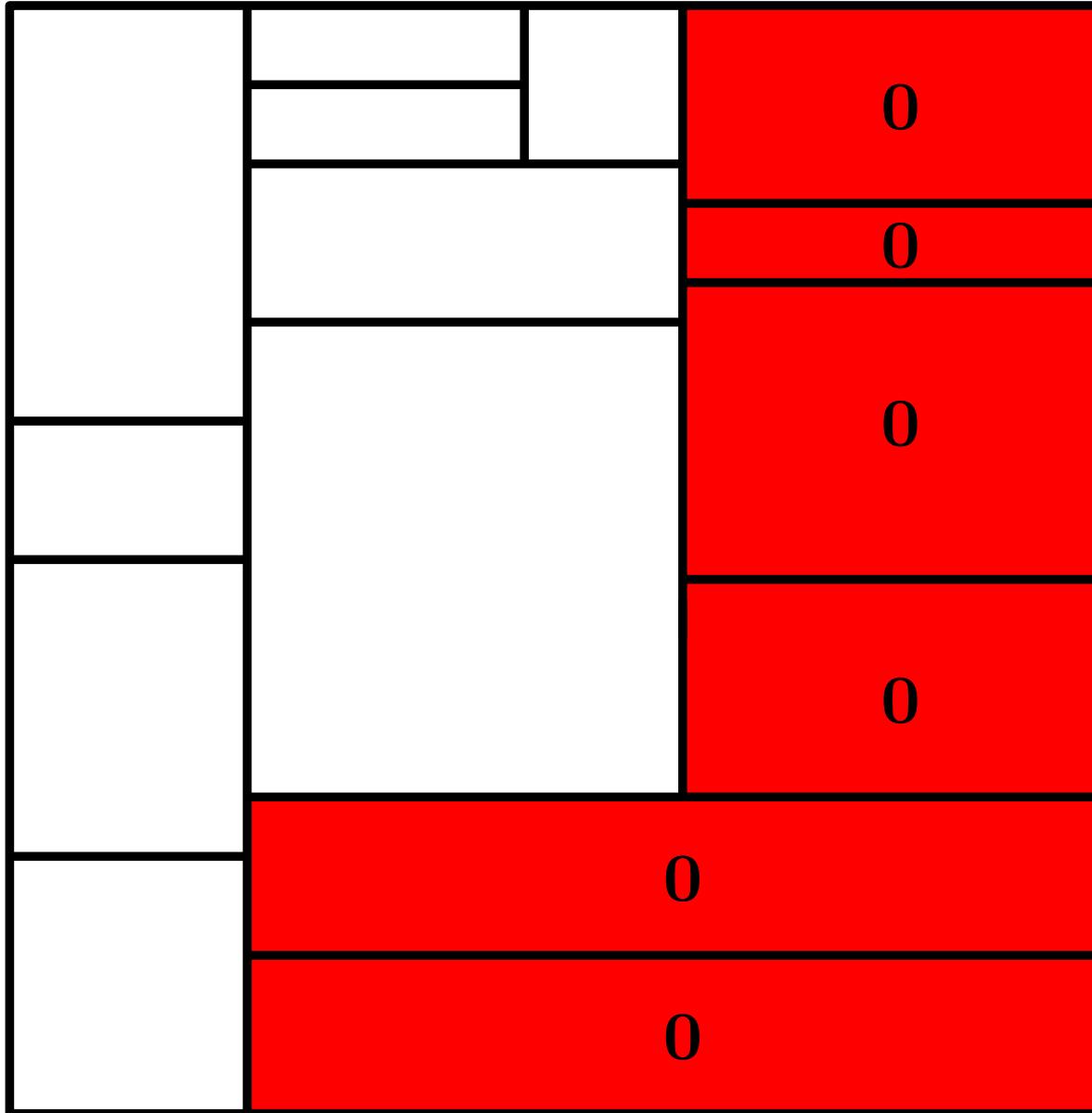
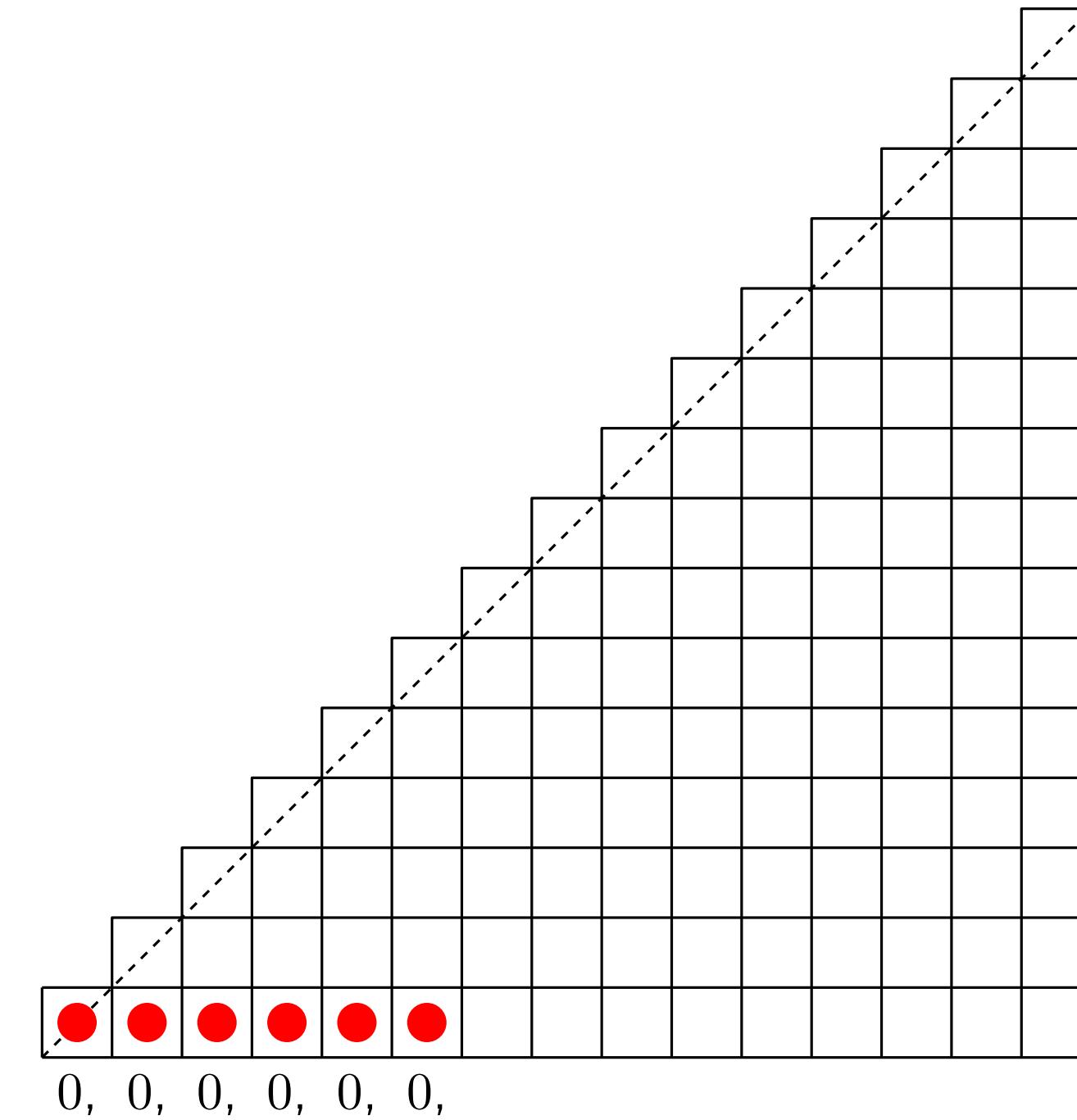
Theorem 1 (Williams): $|R_n^w(\top)| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



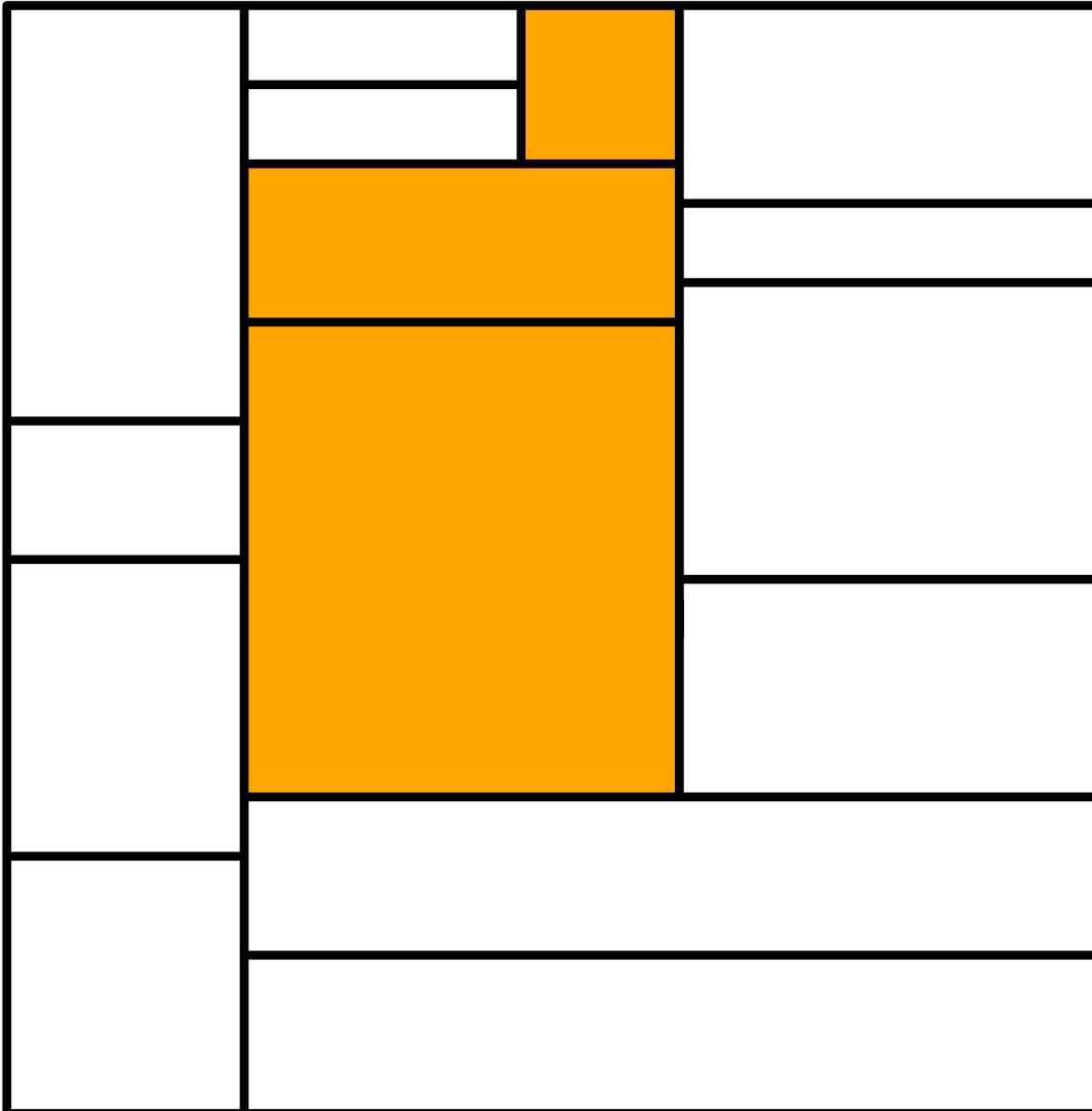
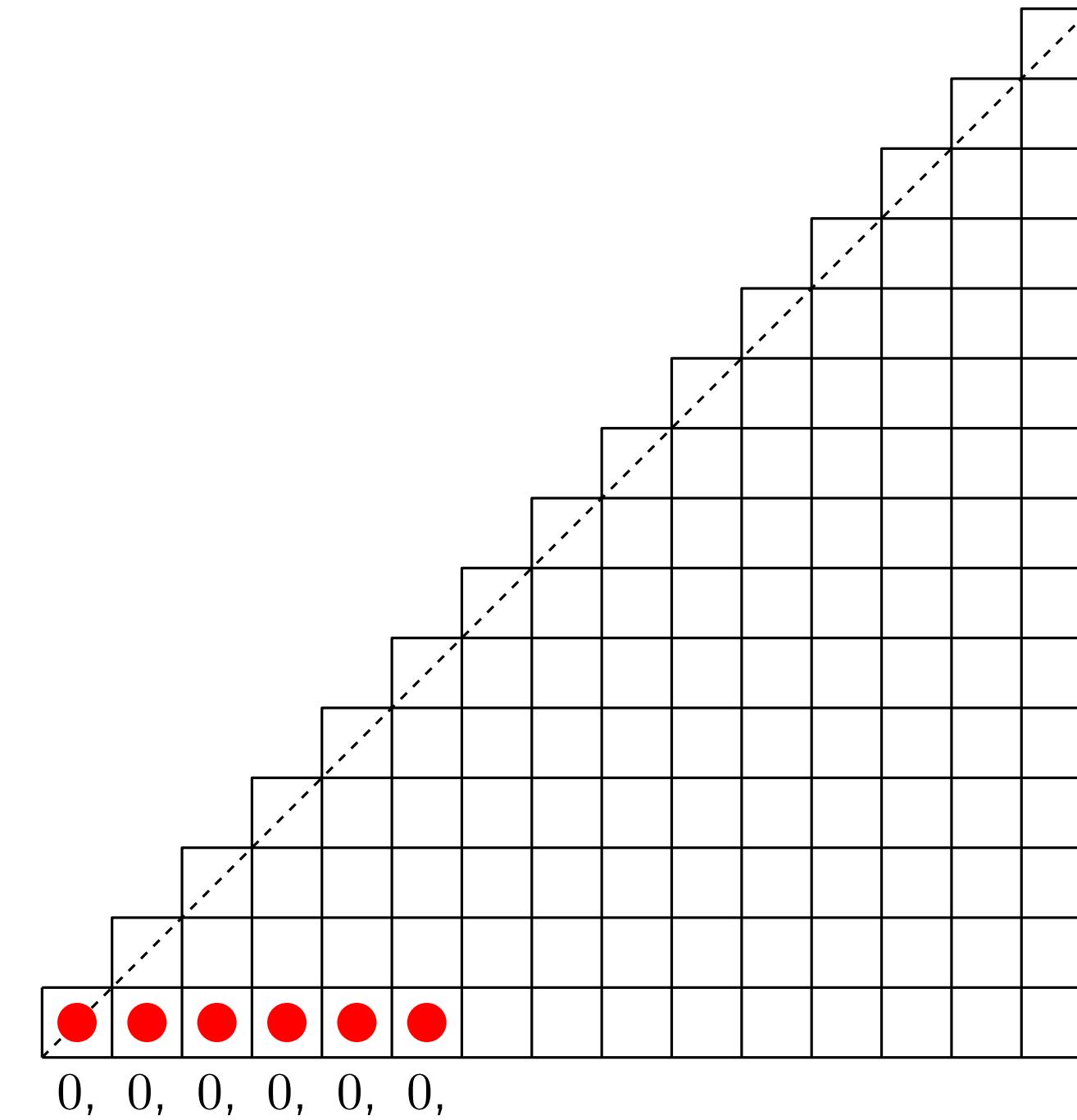
Theorem 1 (Williams): $|R_n^w(\top)| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



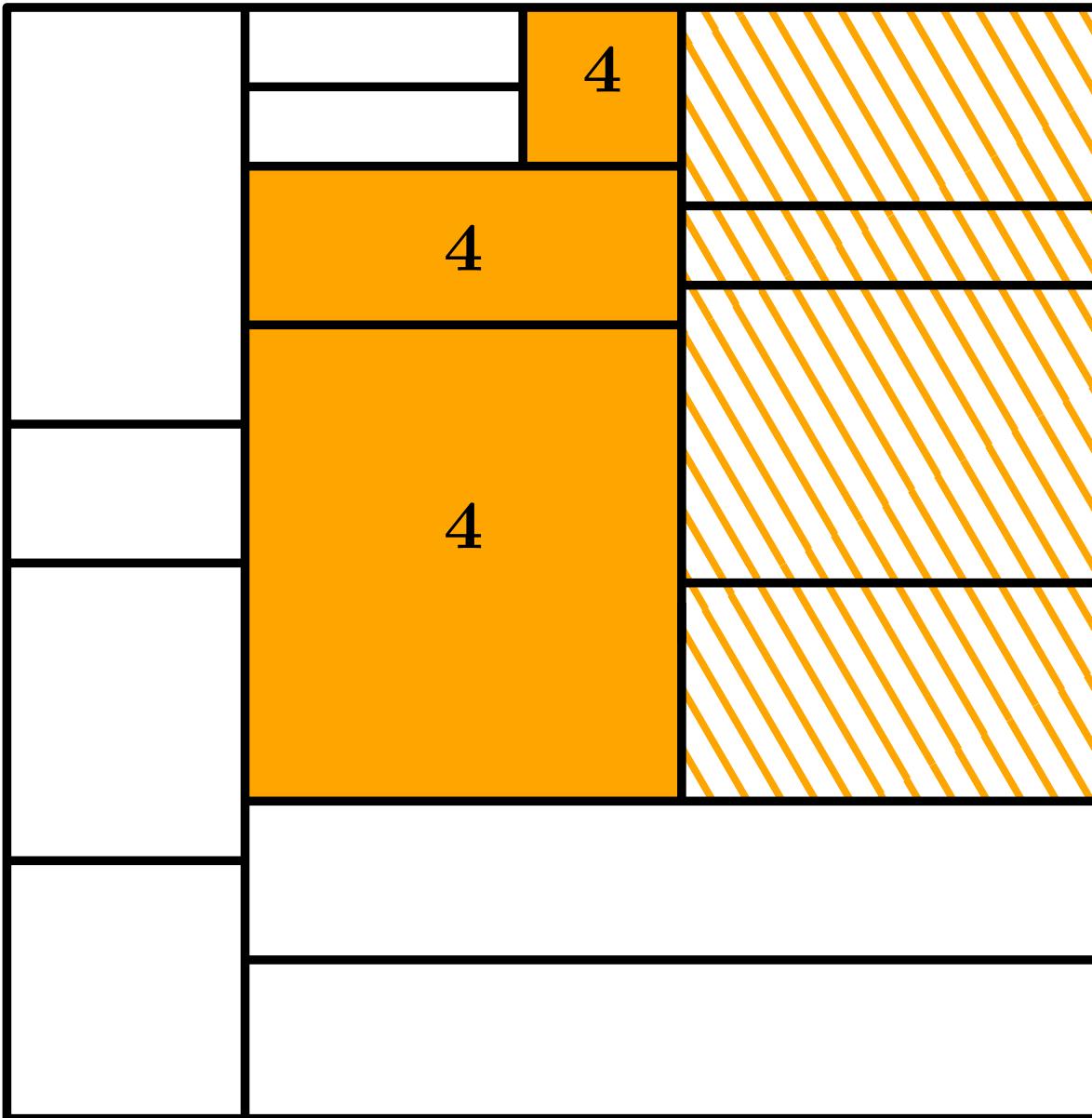
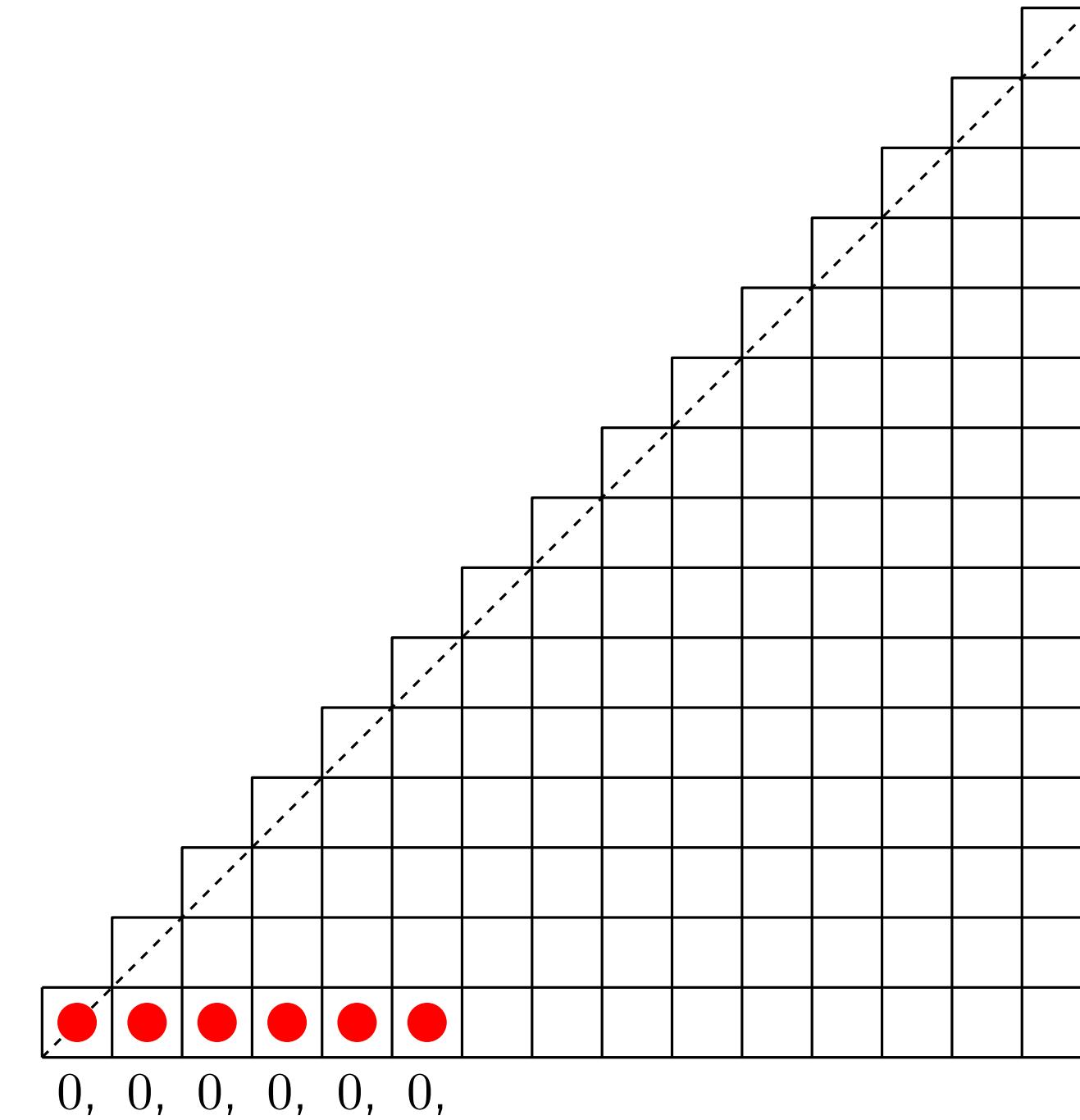
Theorem 1 (Williams): $|R_n^w(\top)| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



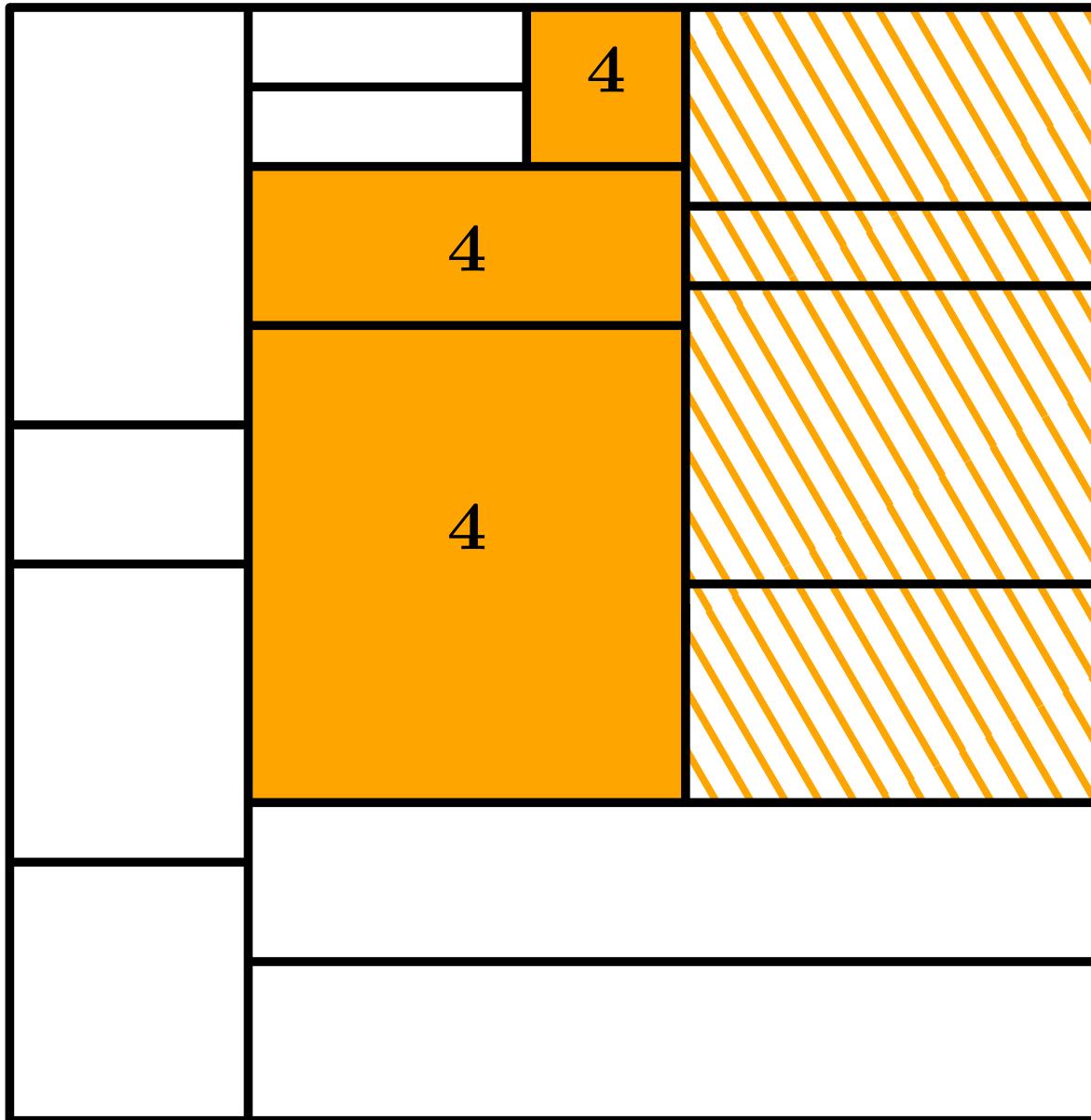
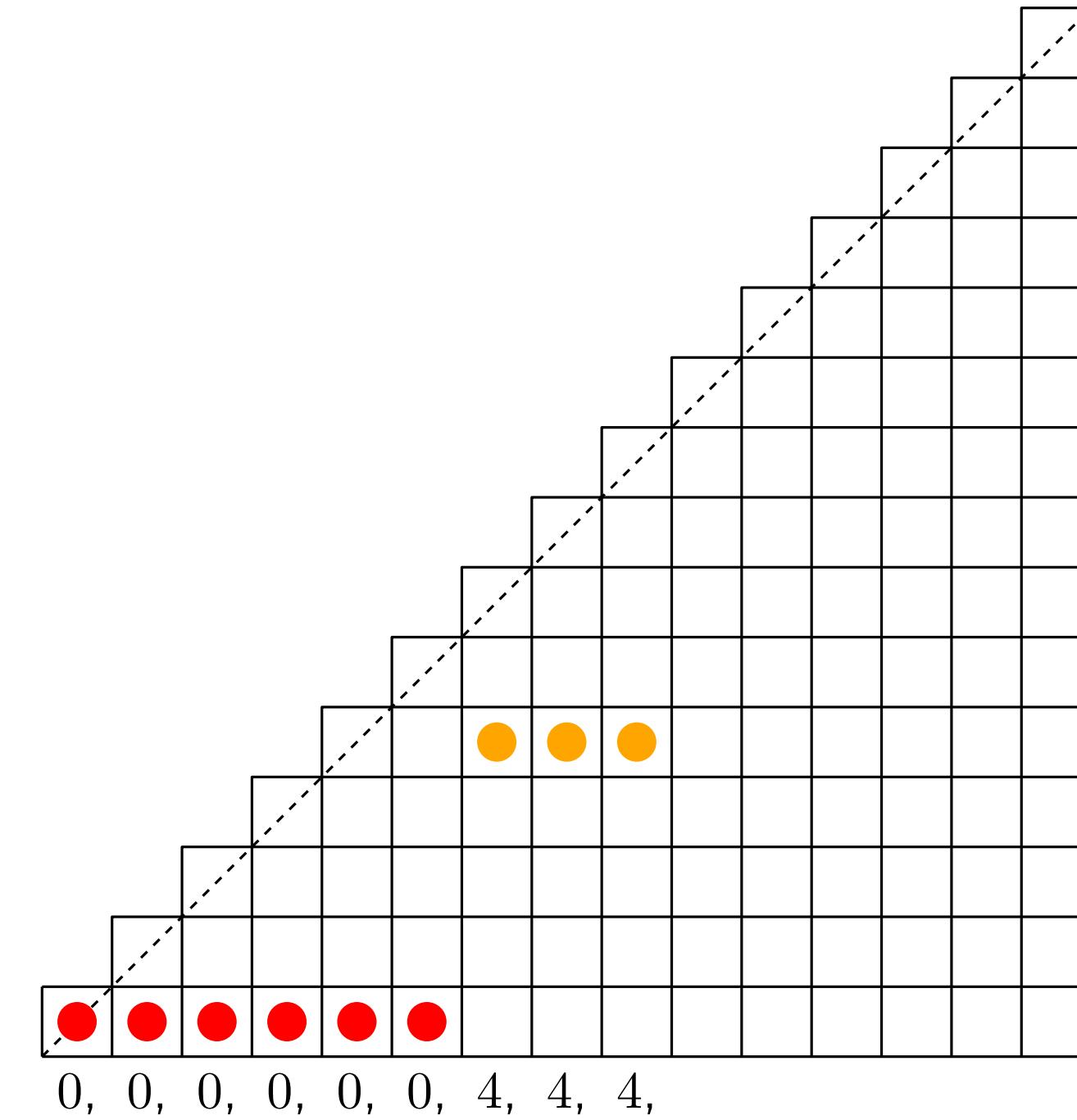
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



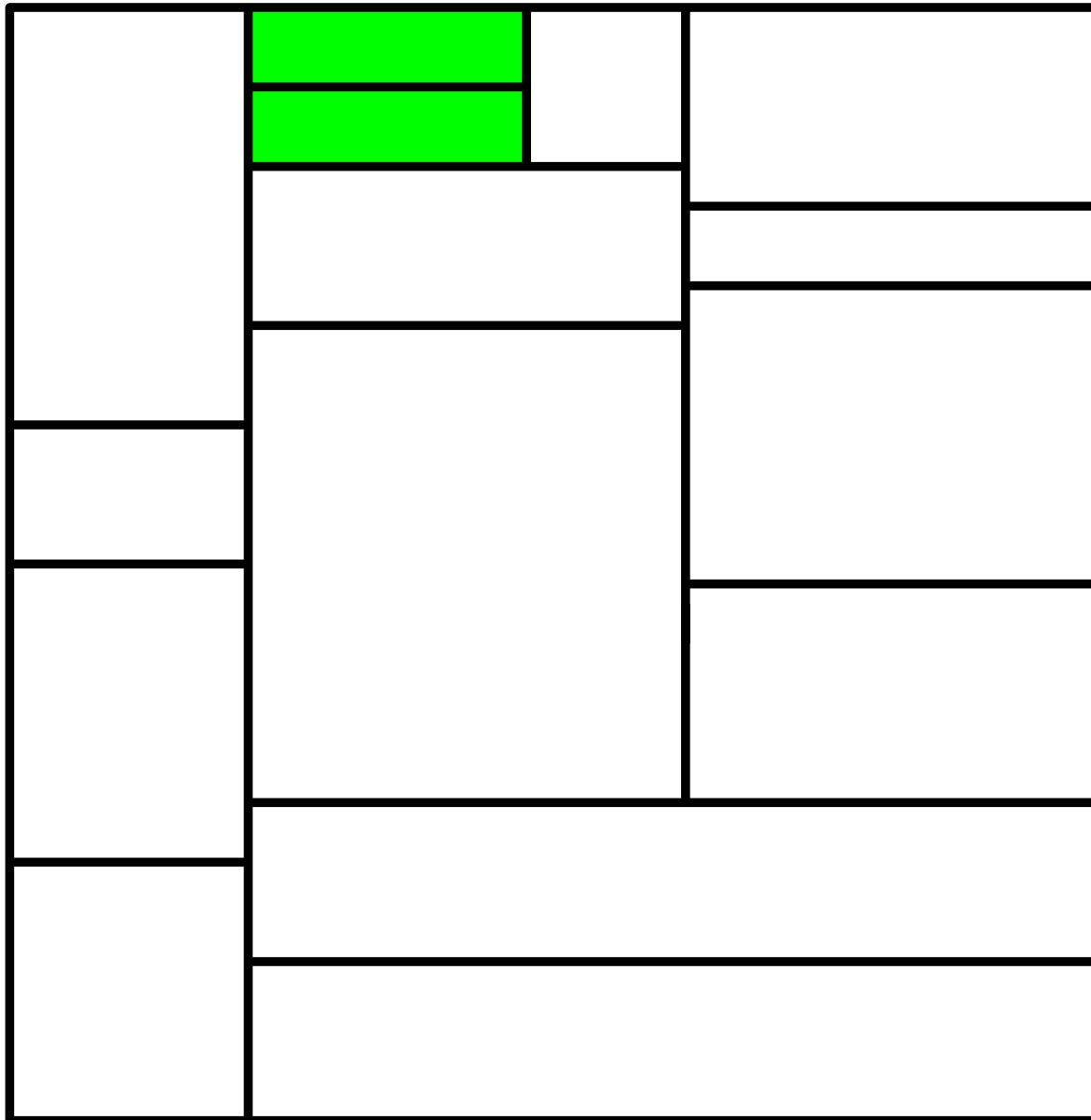
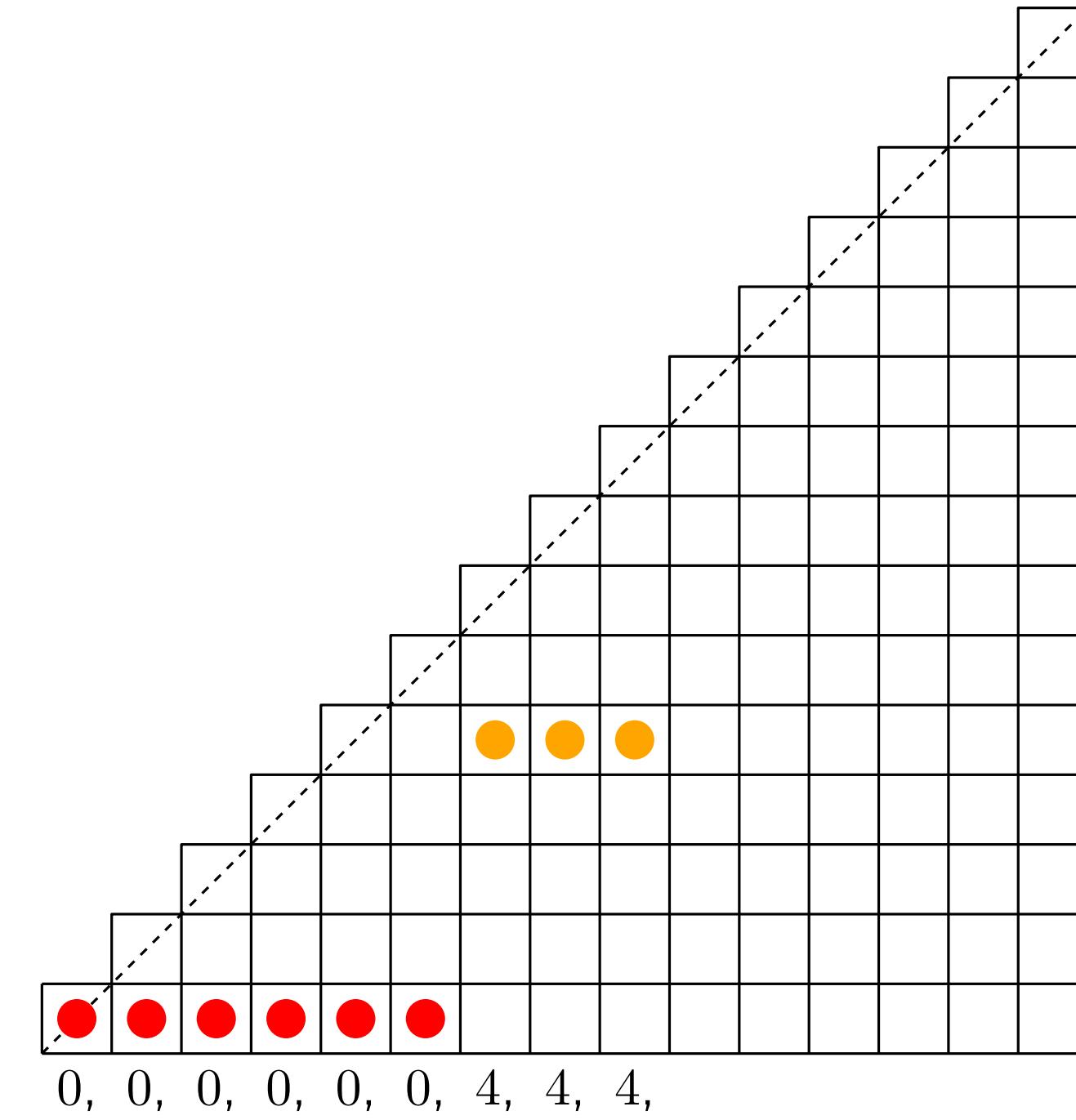
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



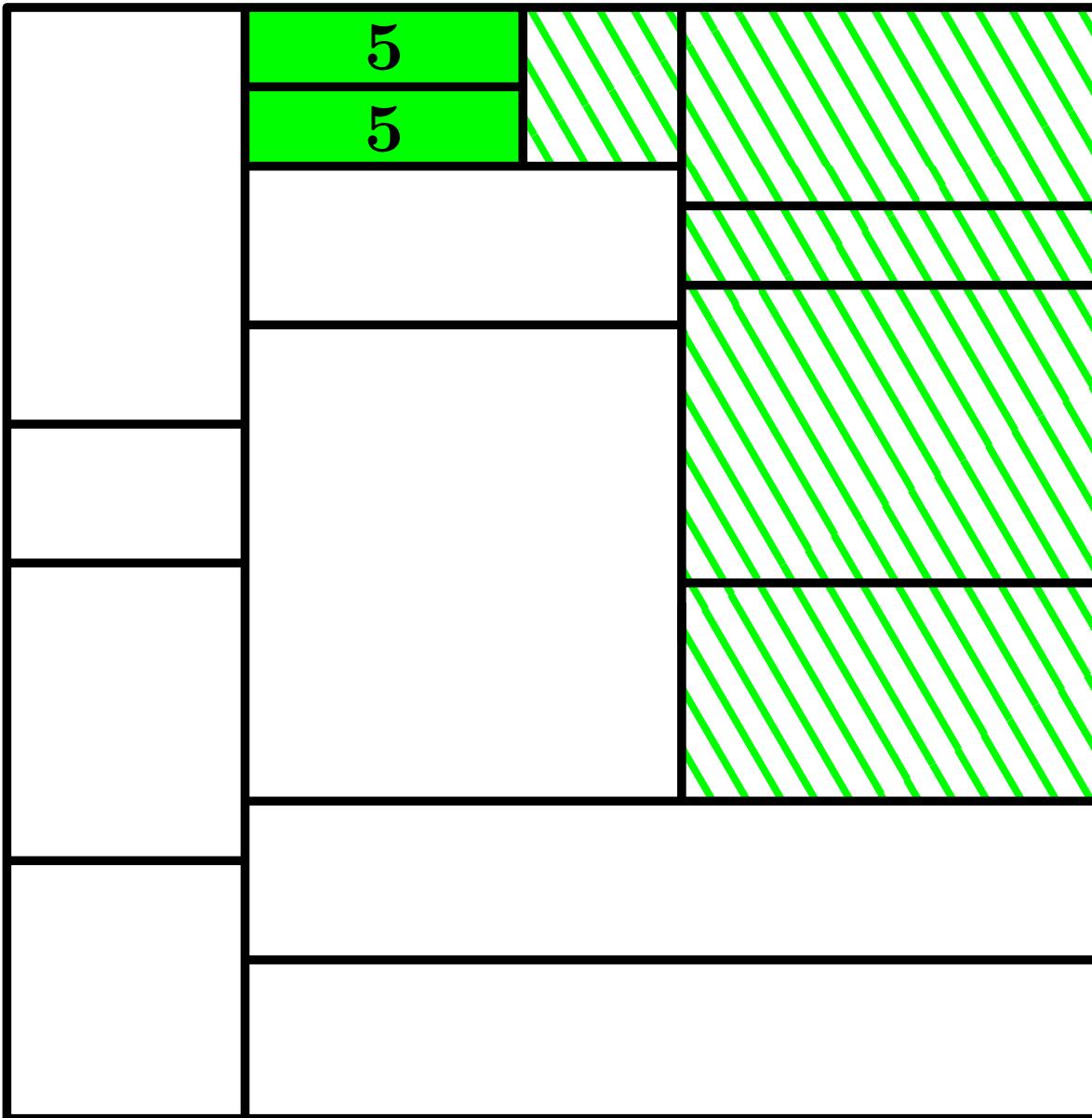
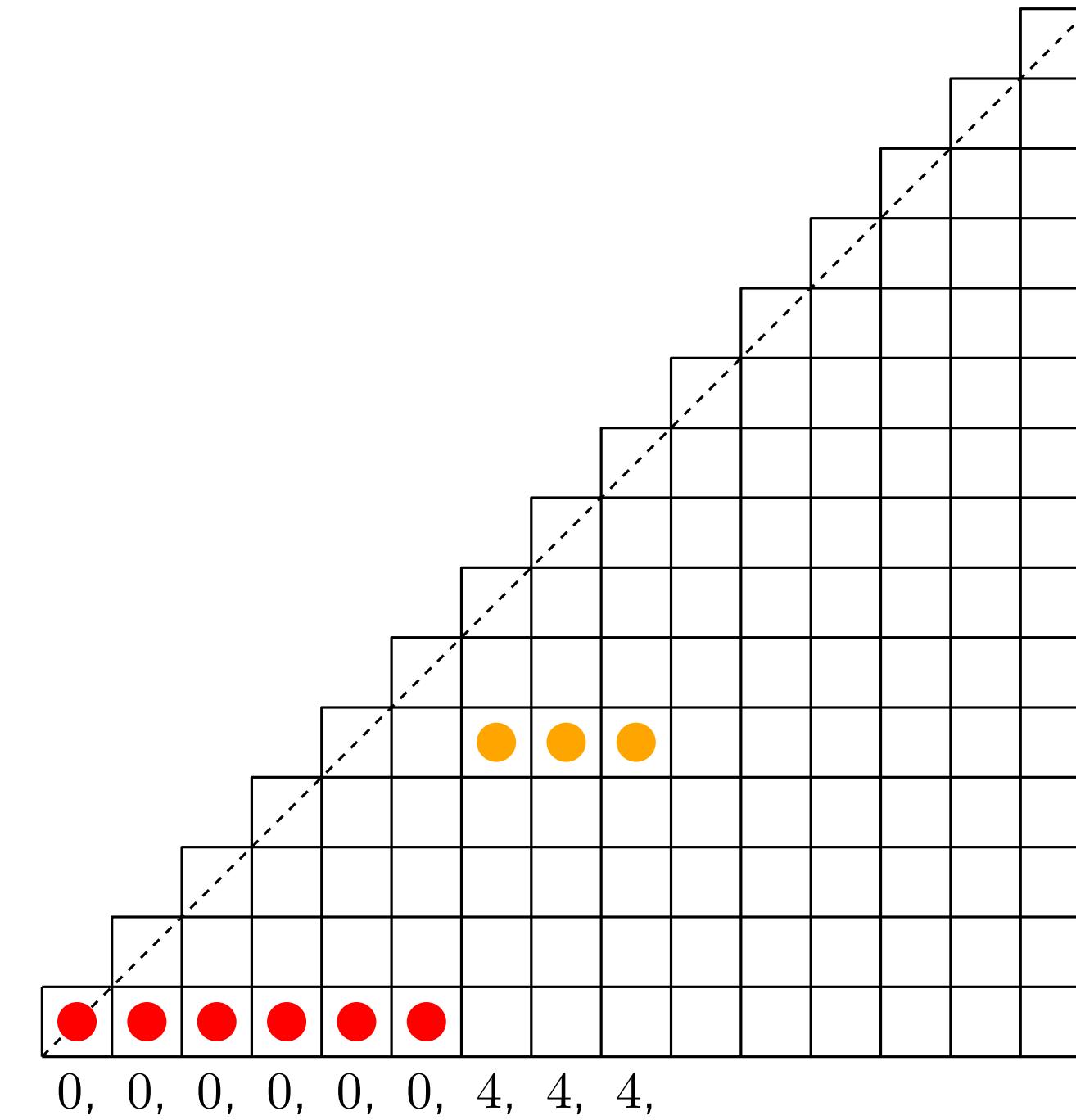
Theorem 1 (Williams): $|R_n^w(\top)| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



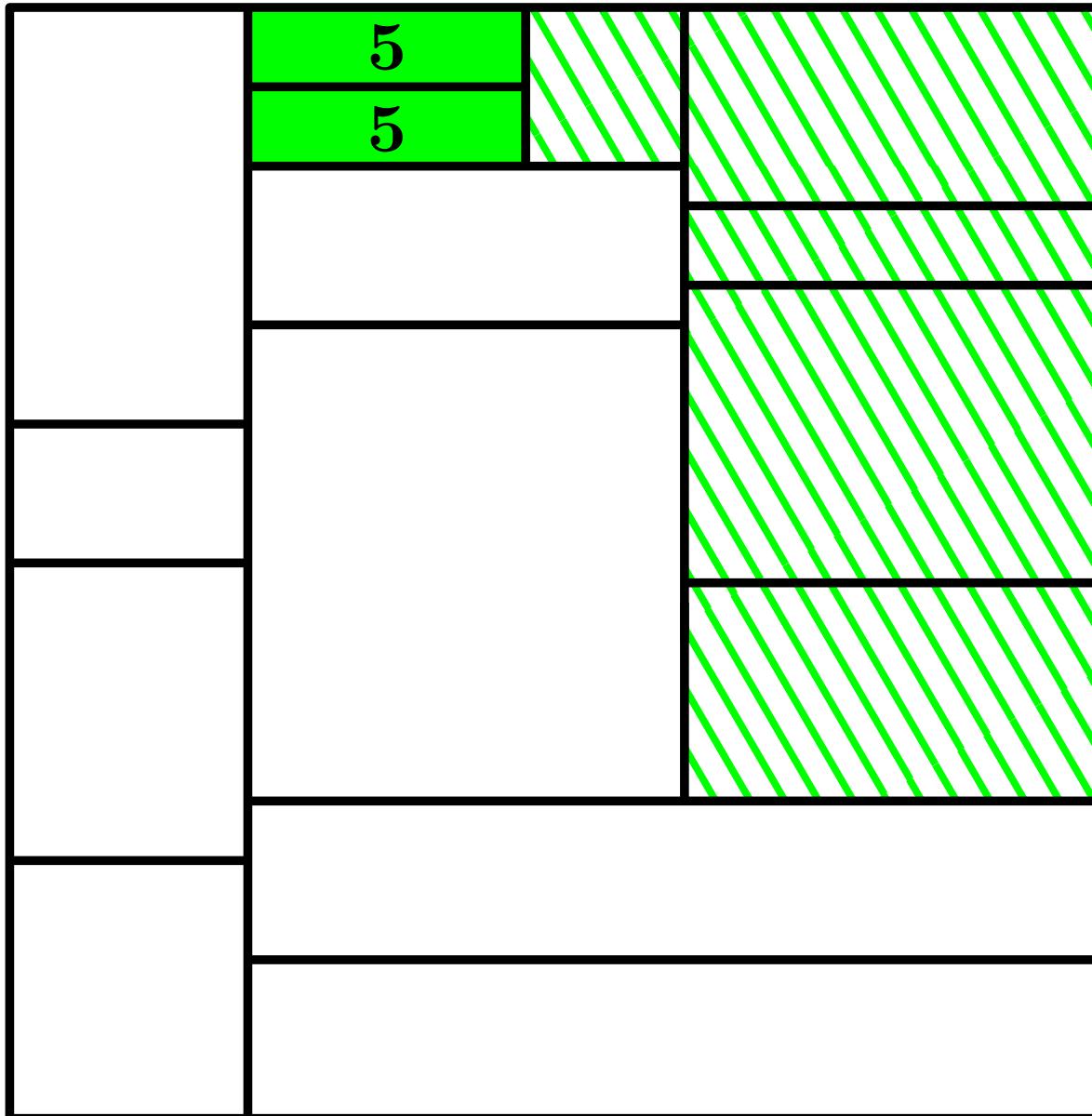
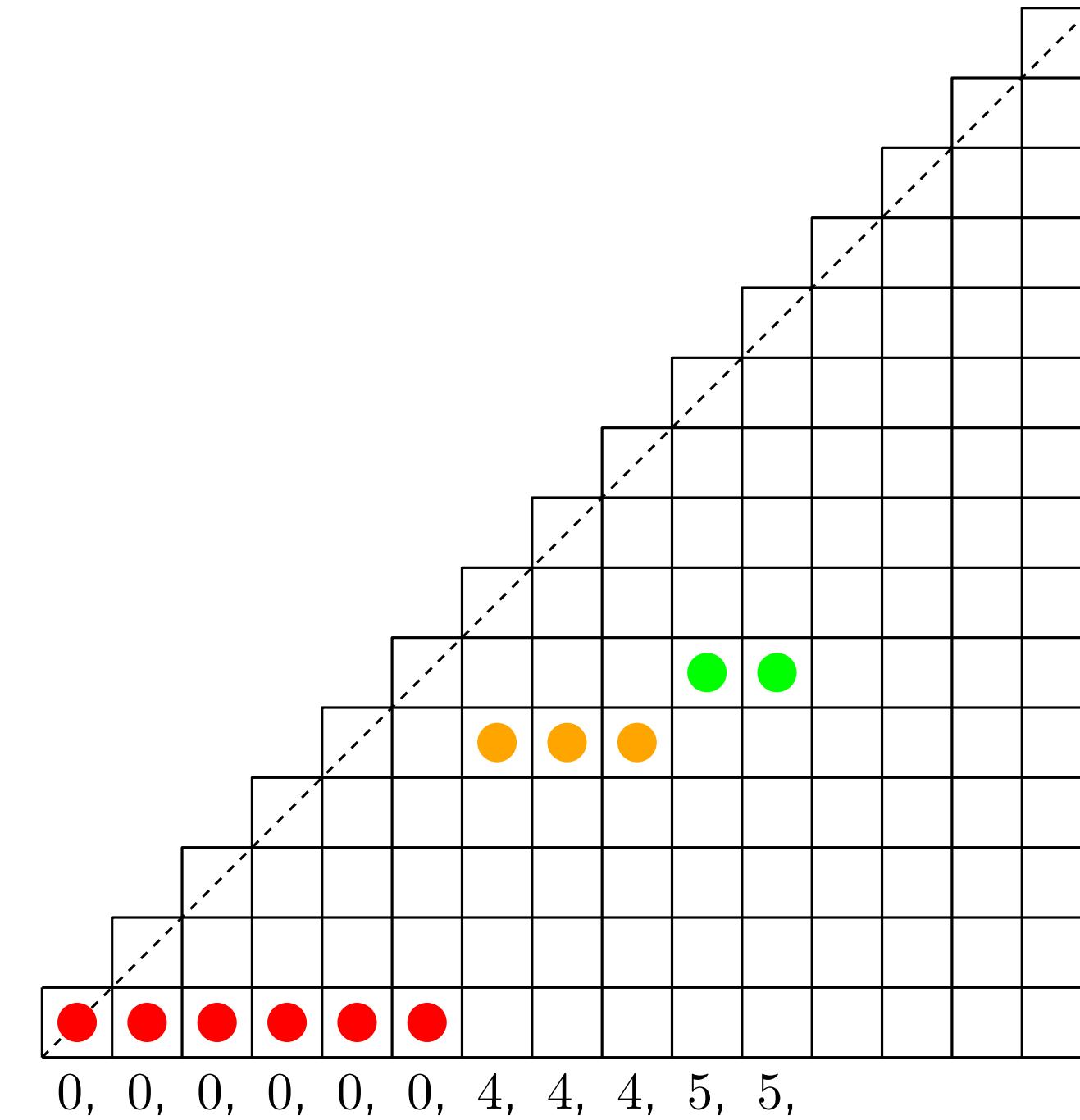
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



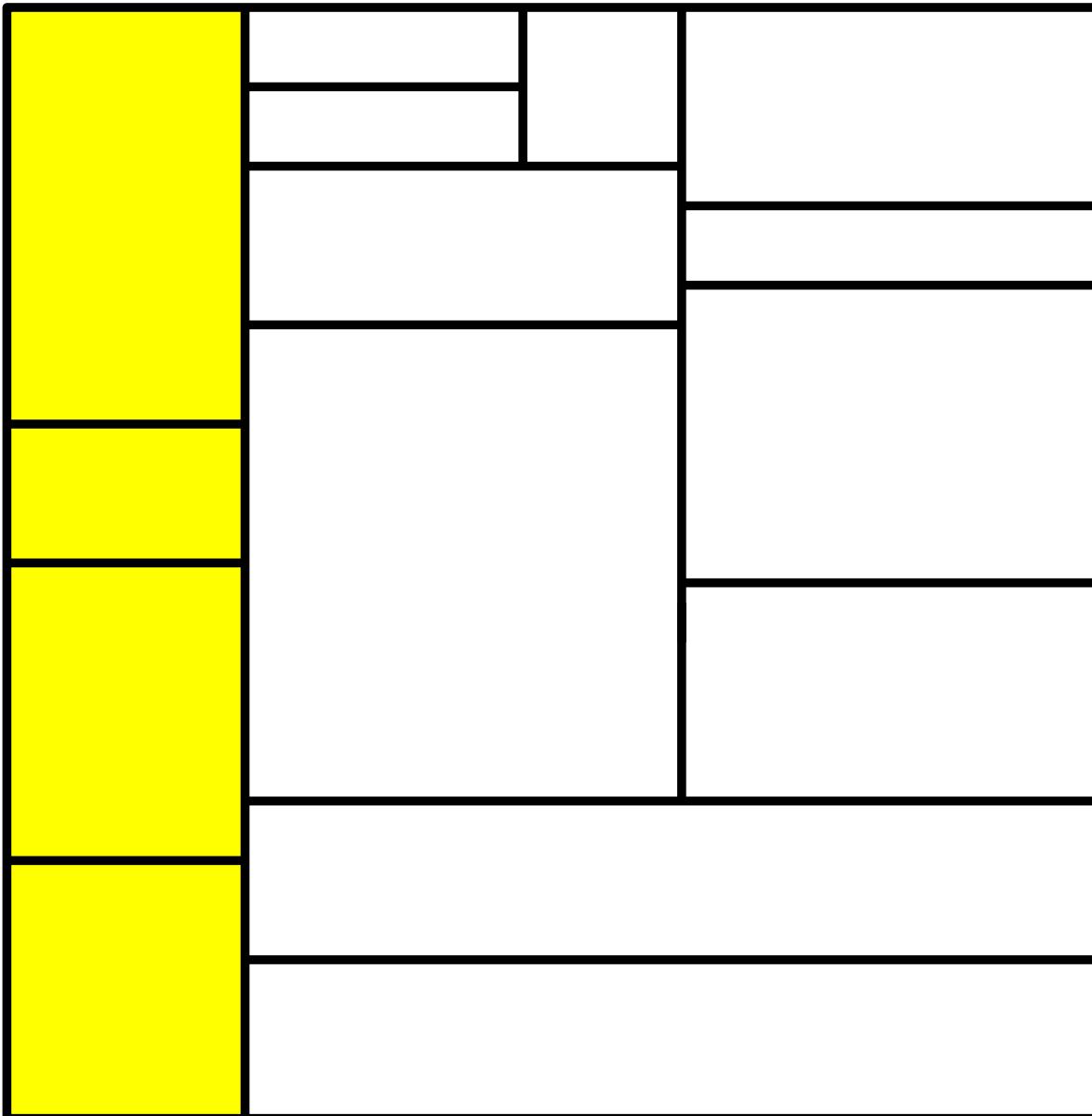
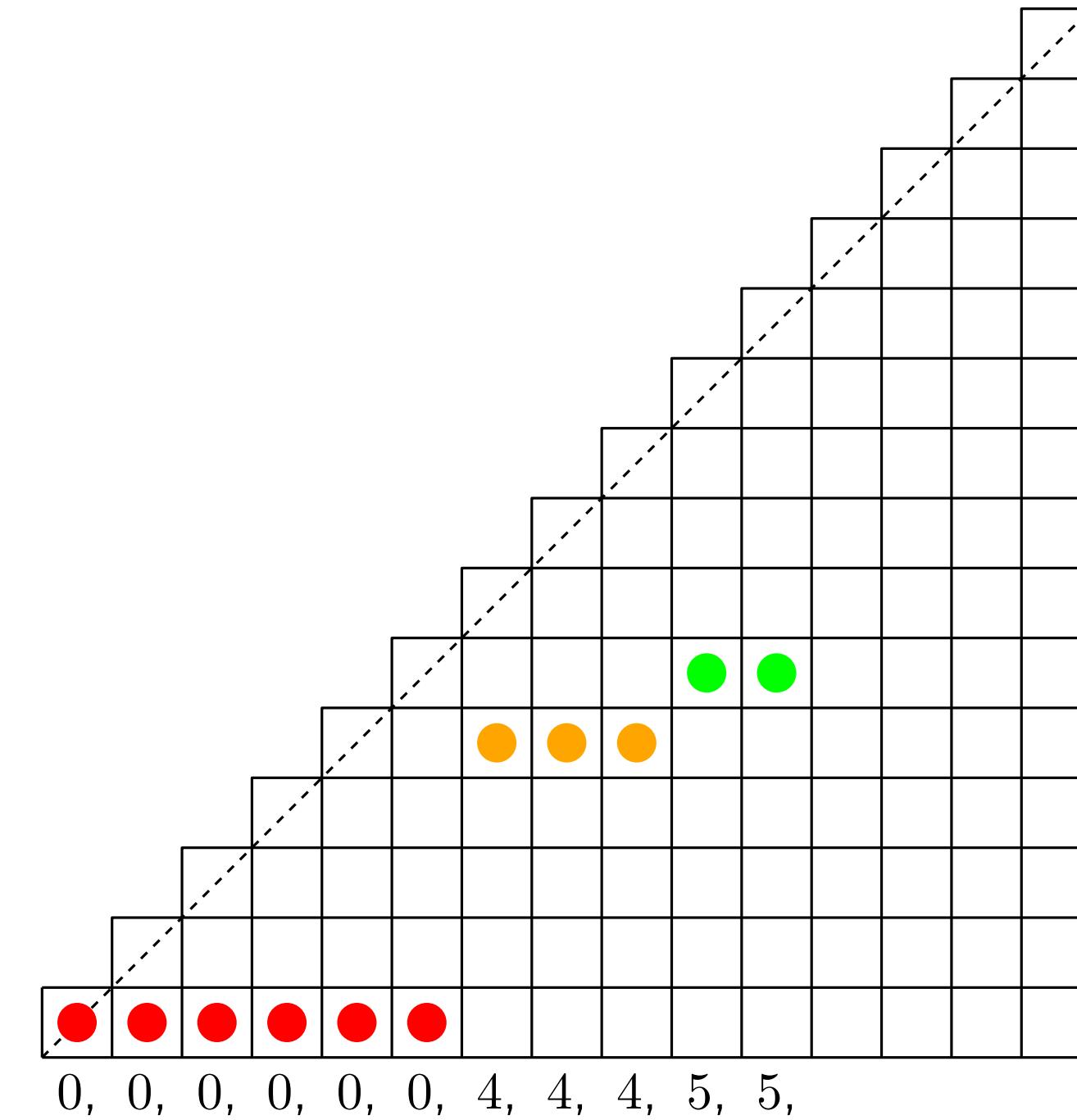
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



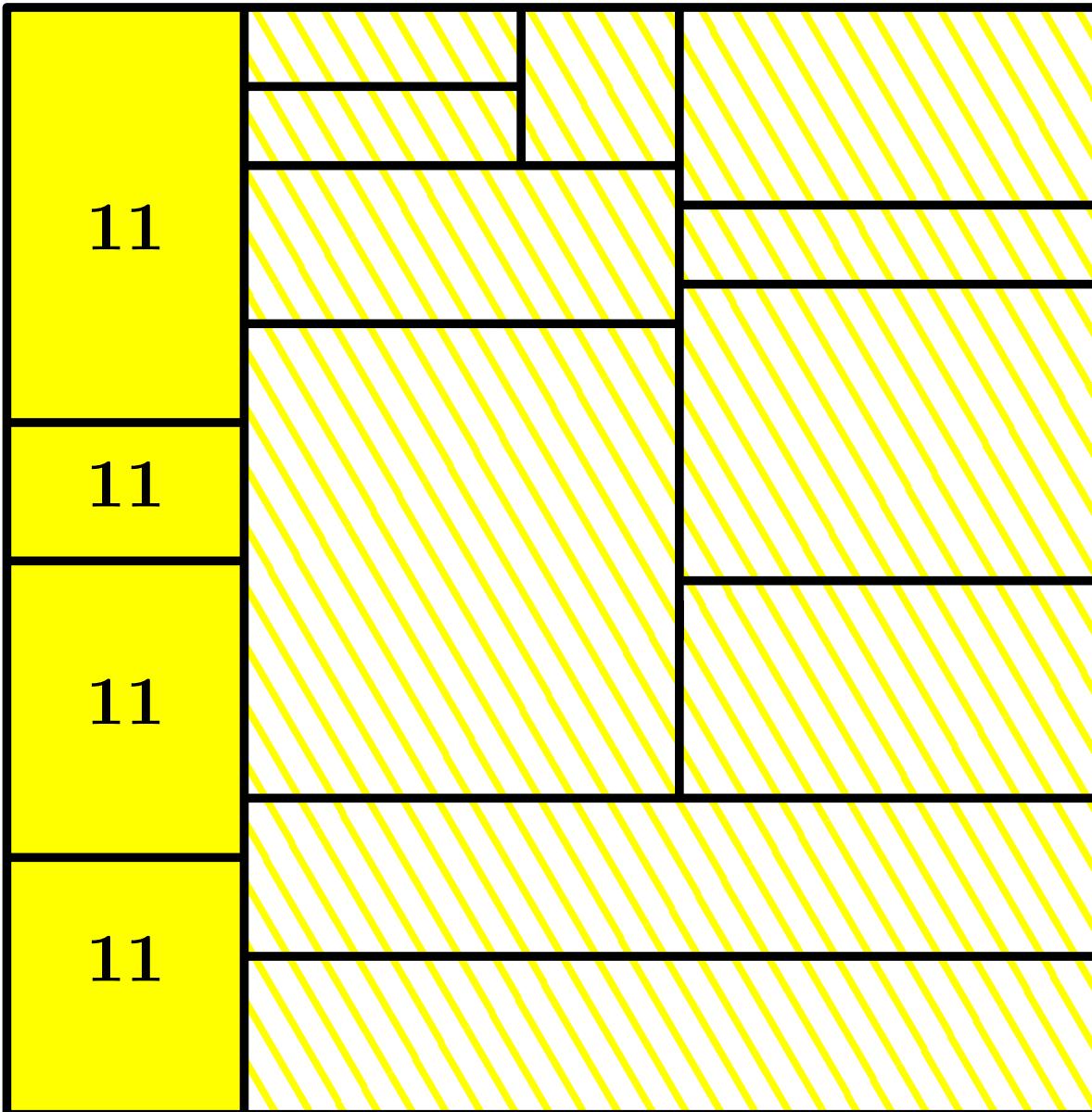
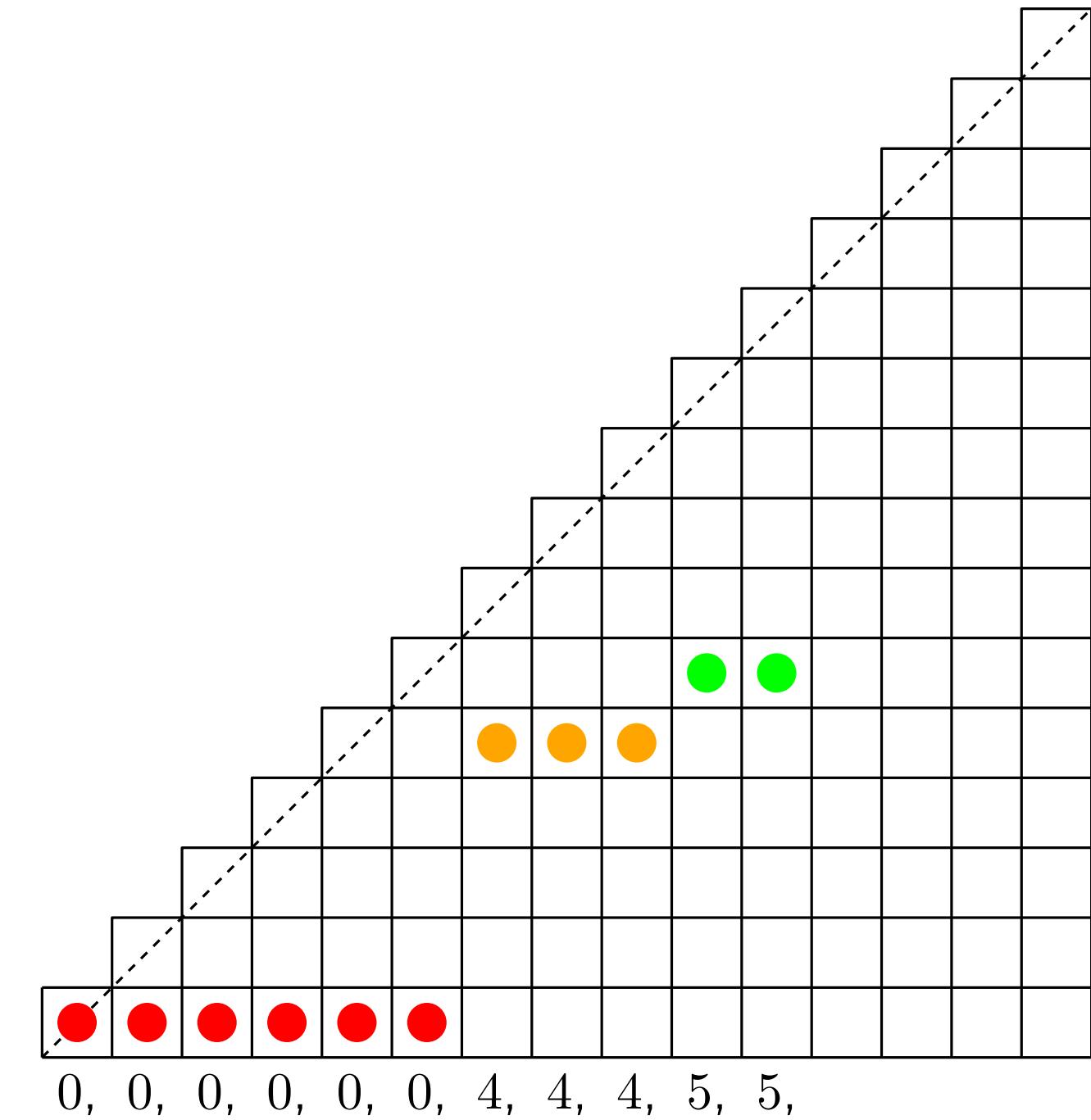
Theorem 1 (Williams): $|R_n^w(\top)| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



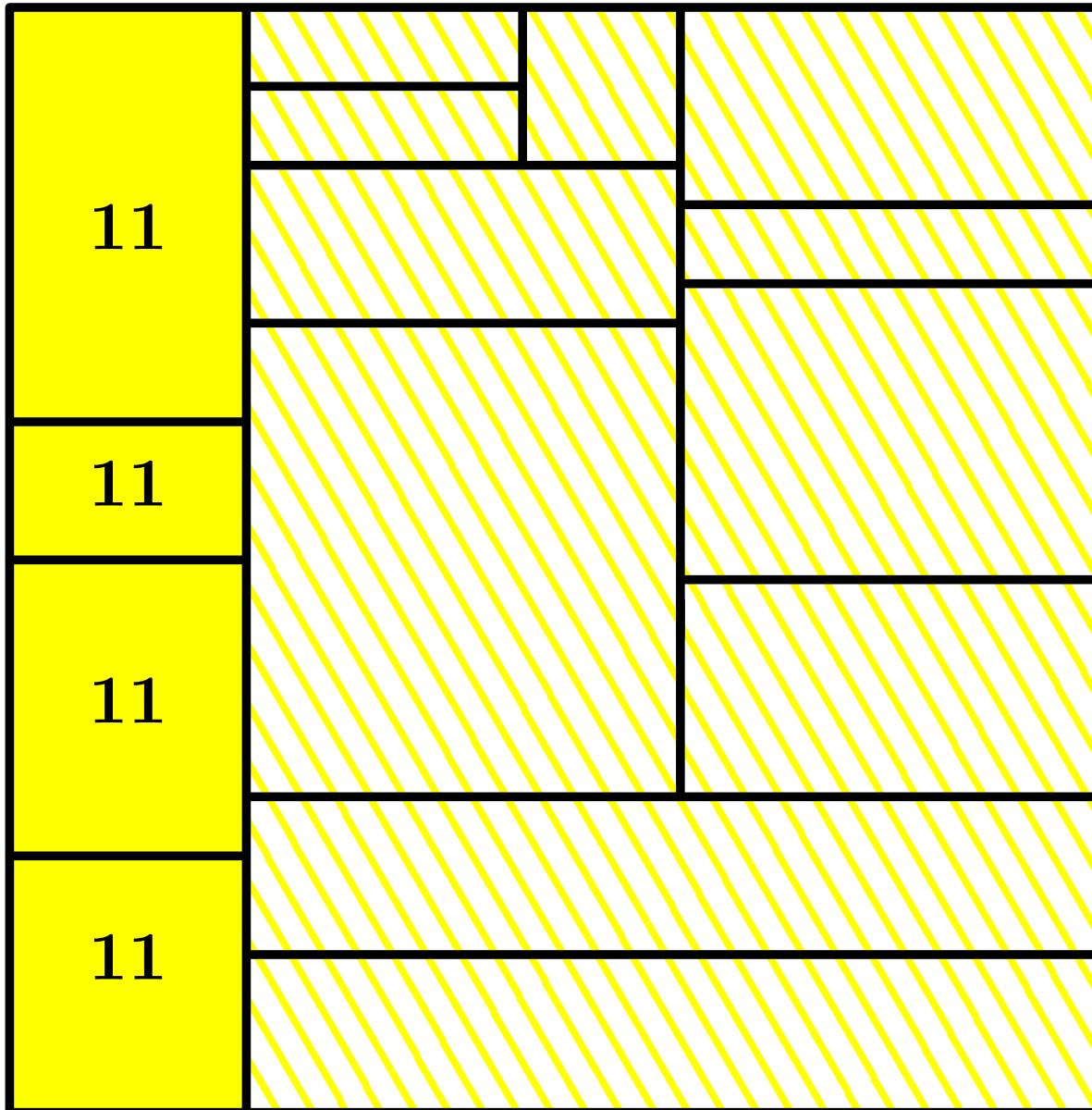
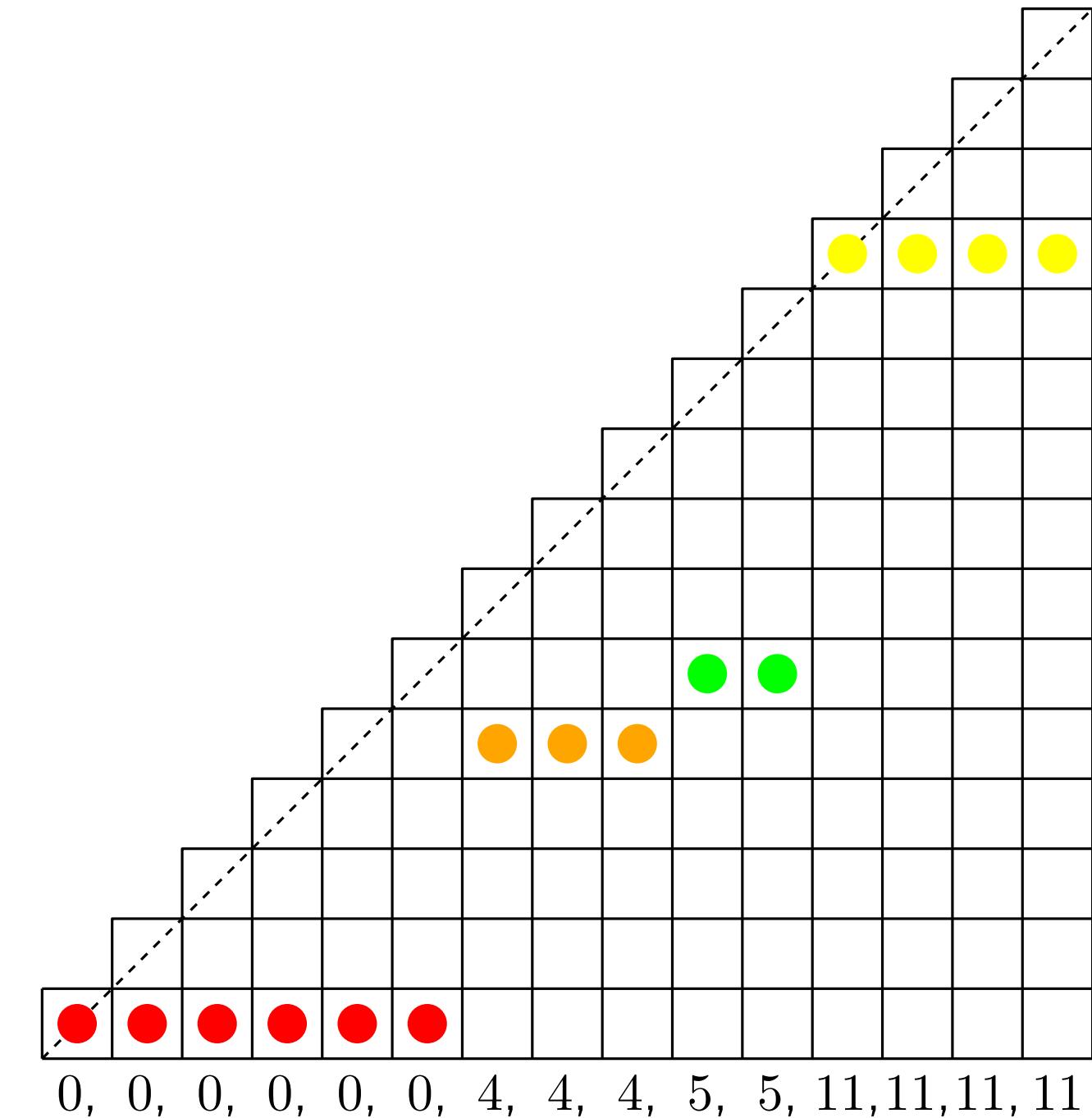
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



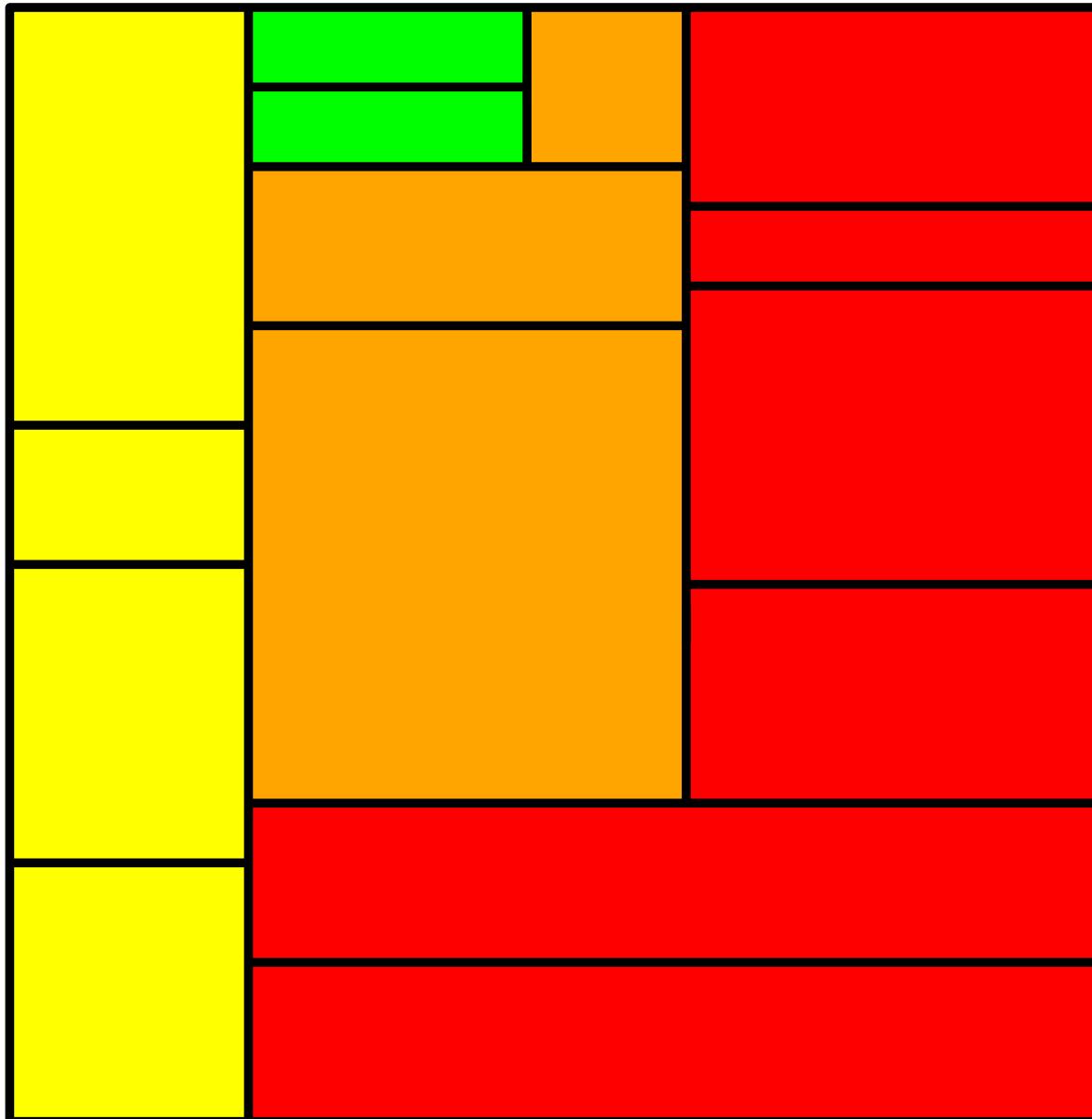
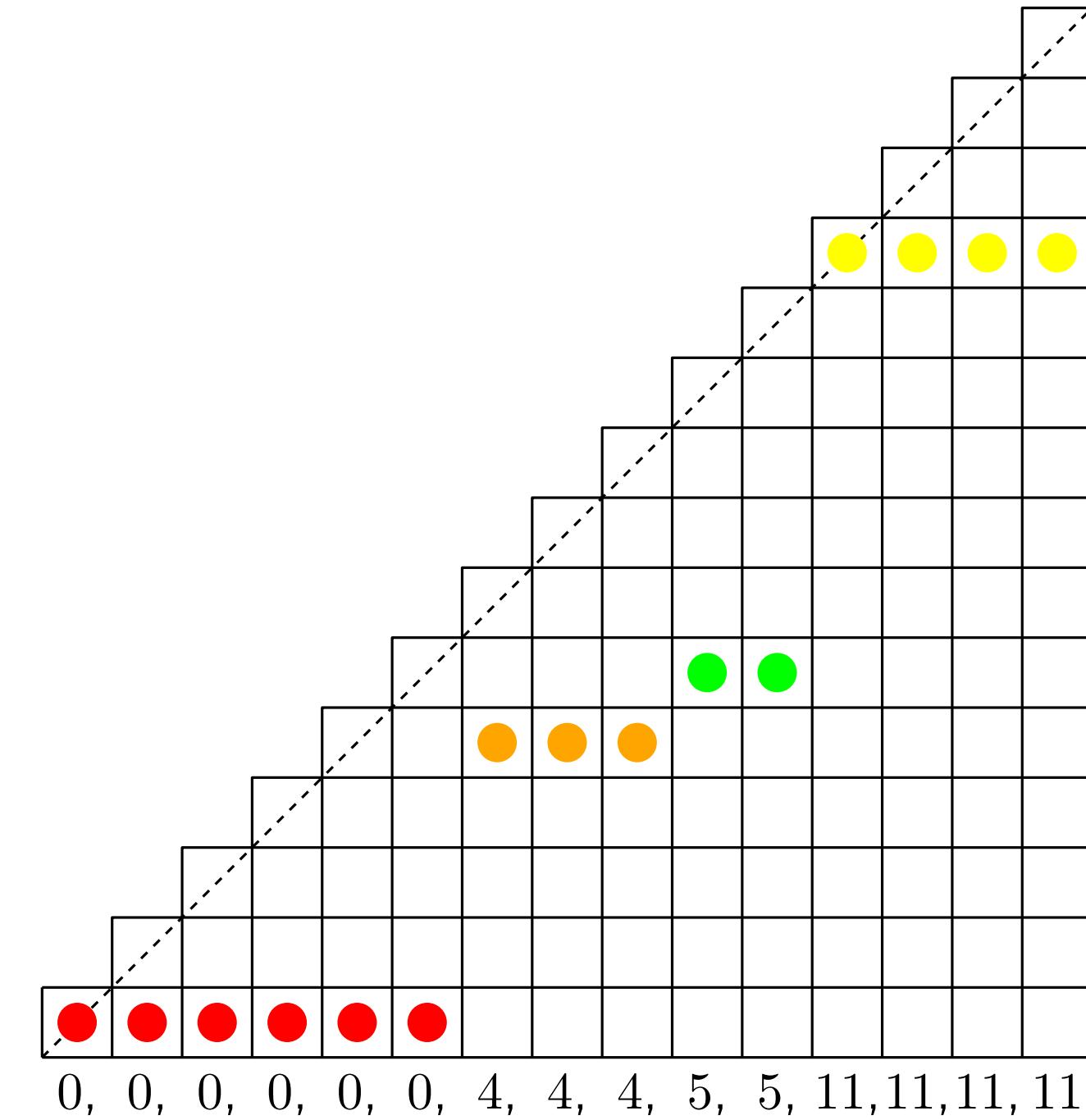
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



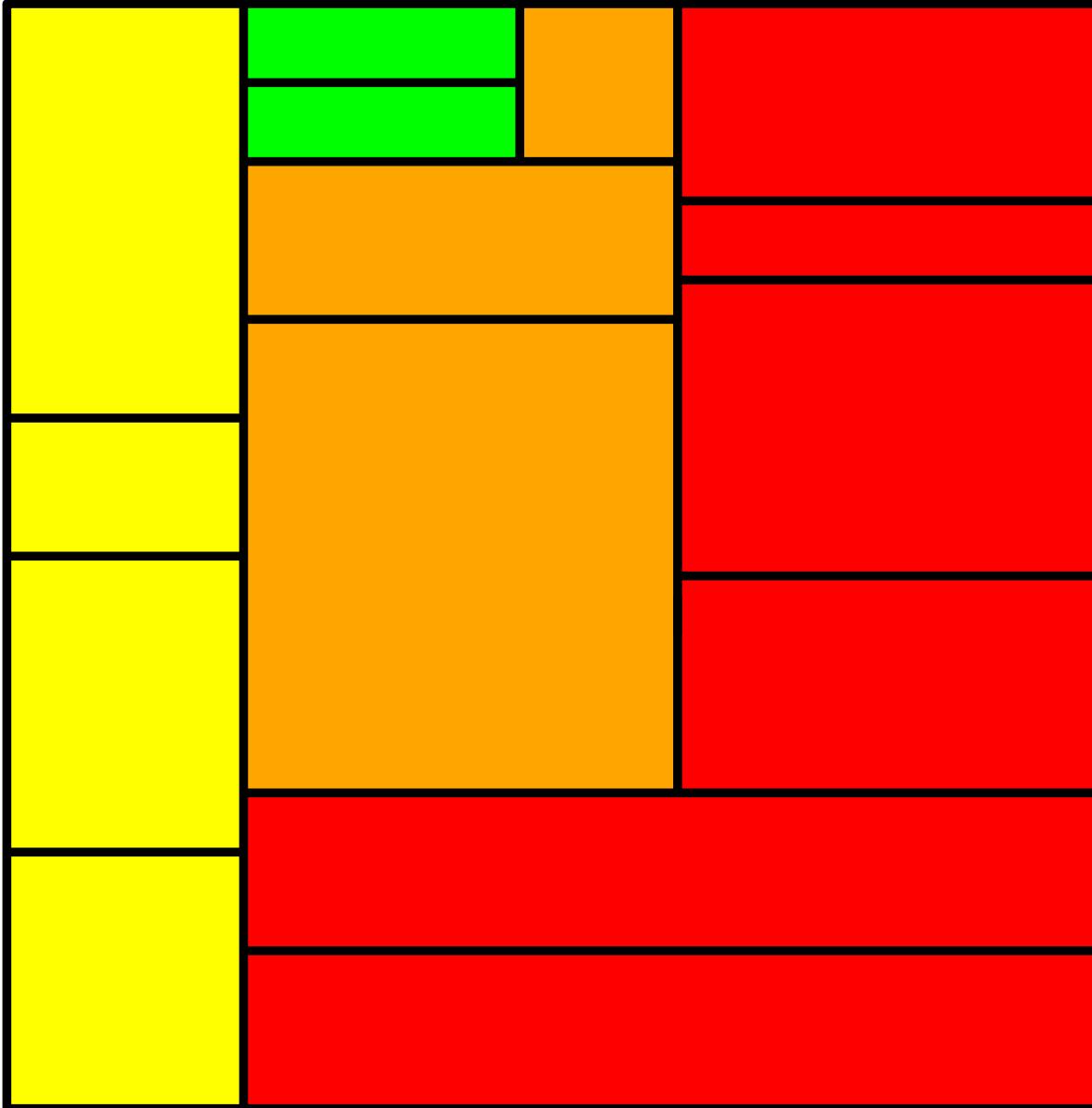
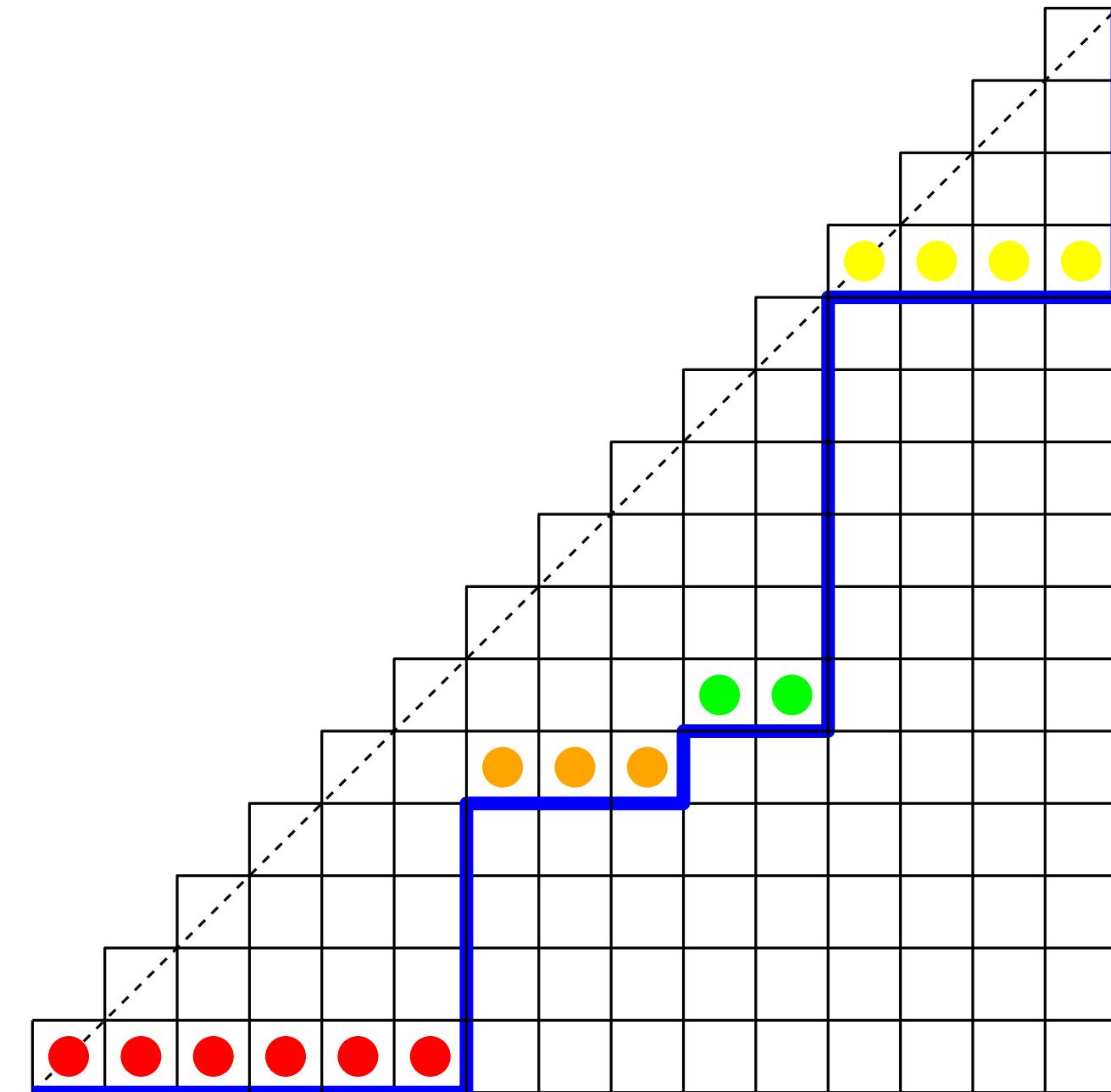
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



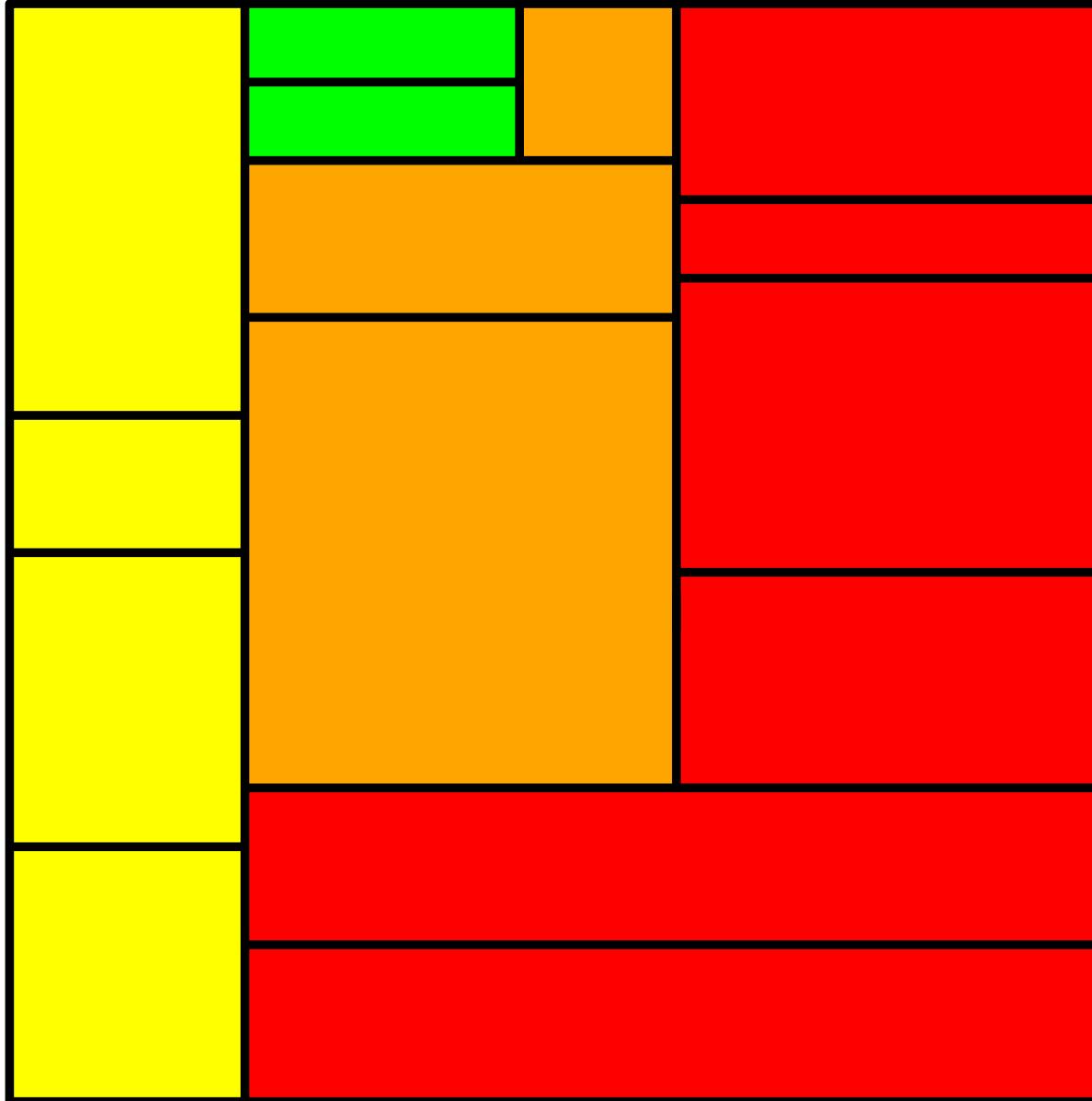
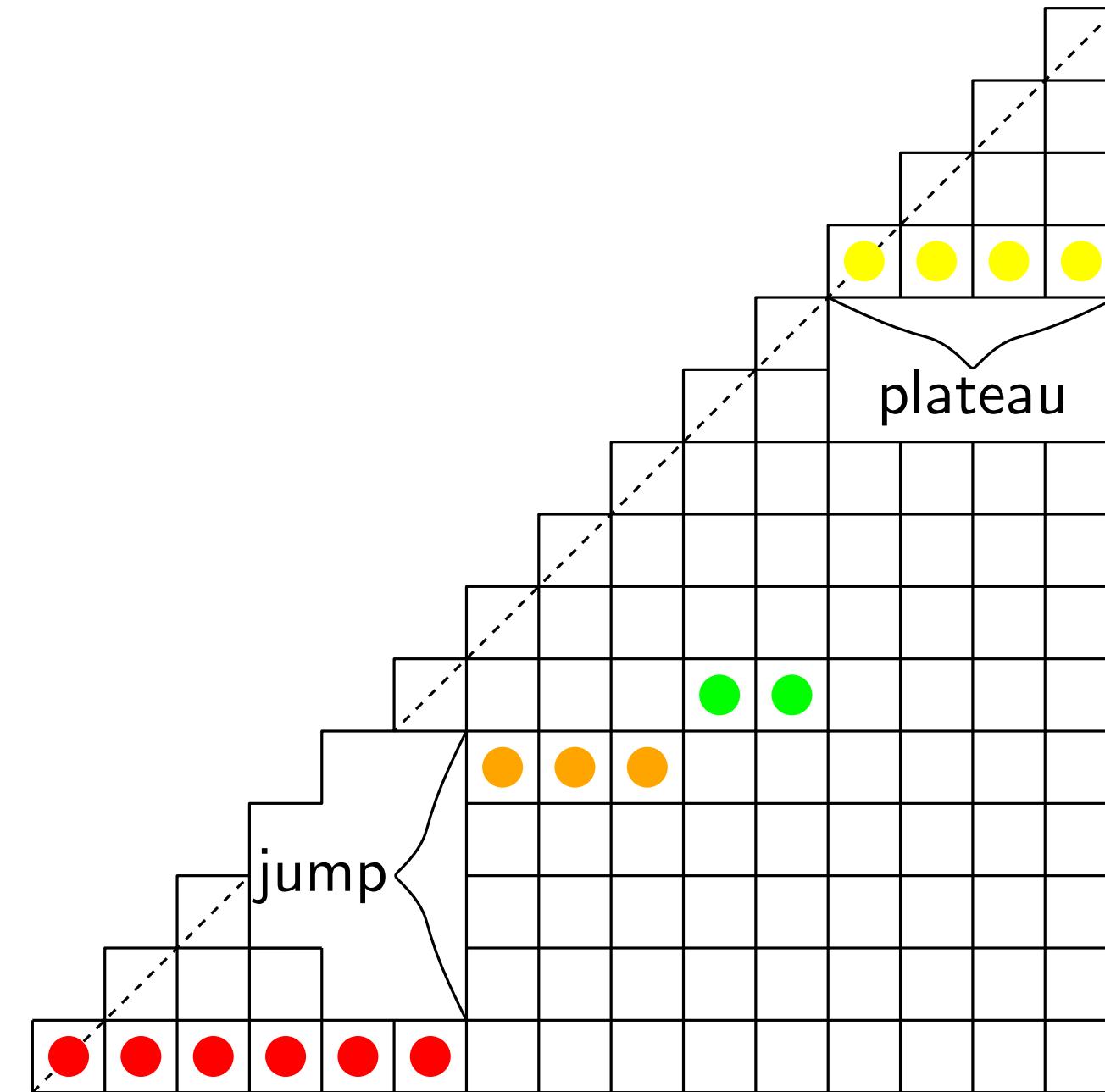
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



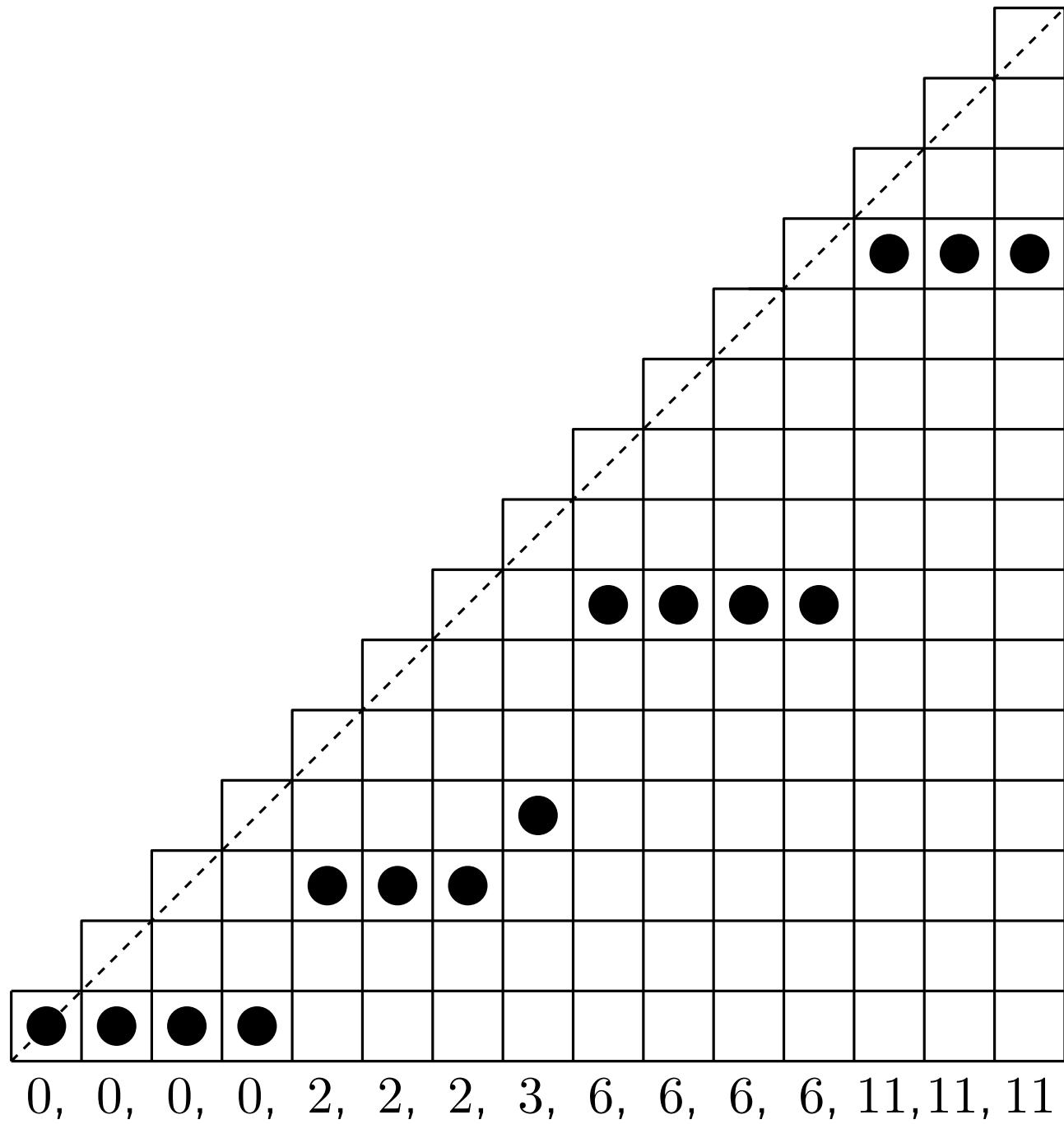
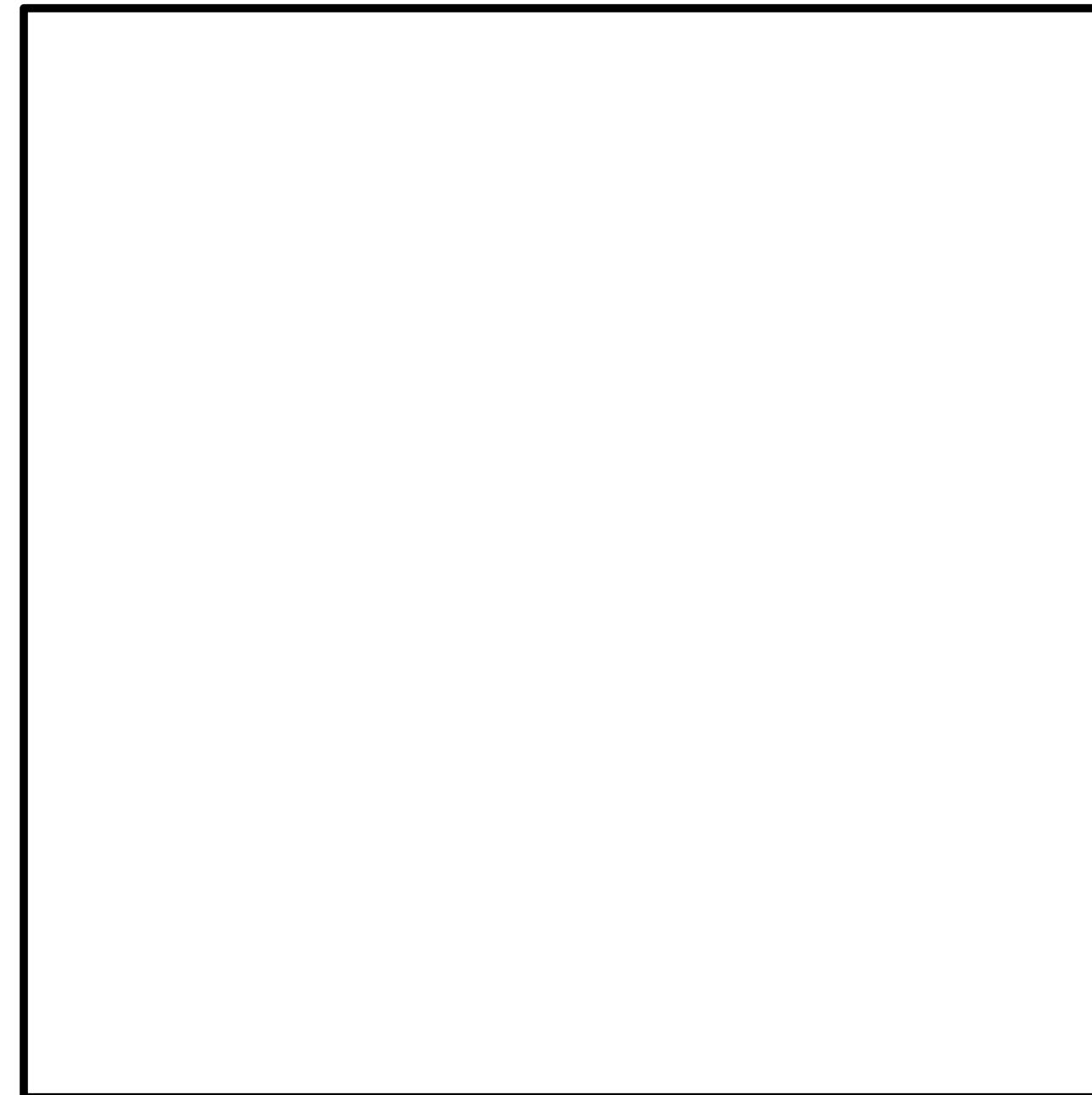
Theorem 1 (Williams): $|R_n^w(\top)| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



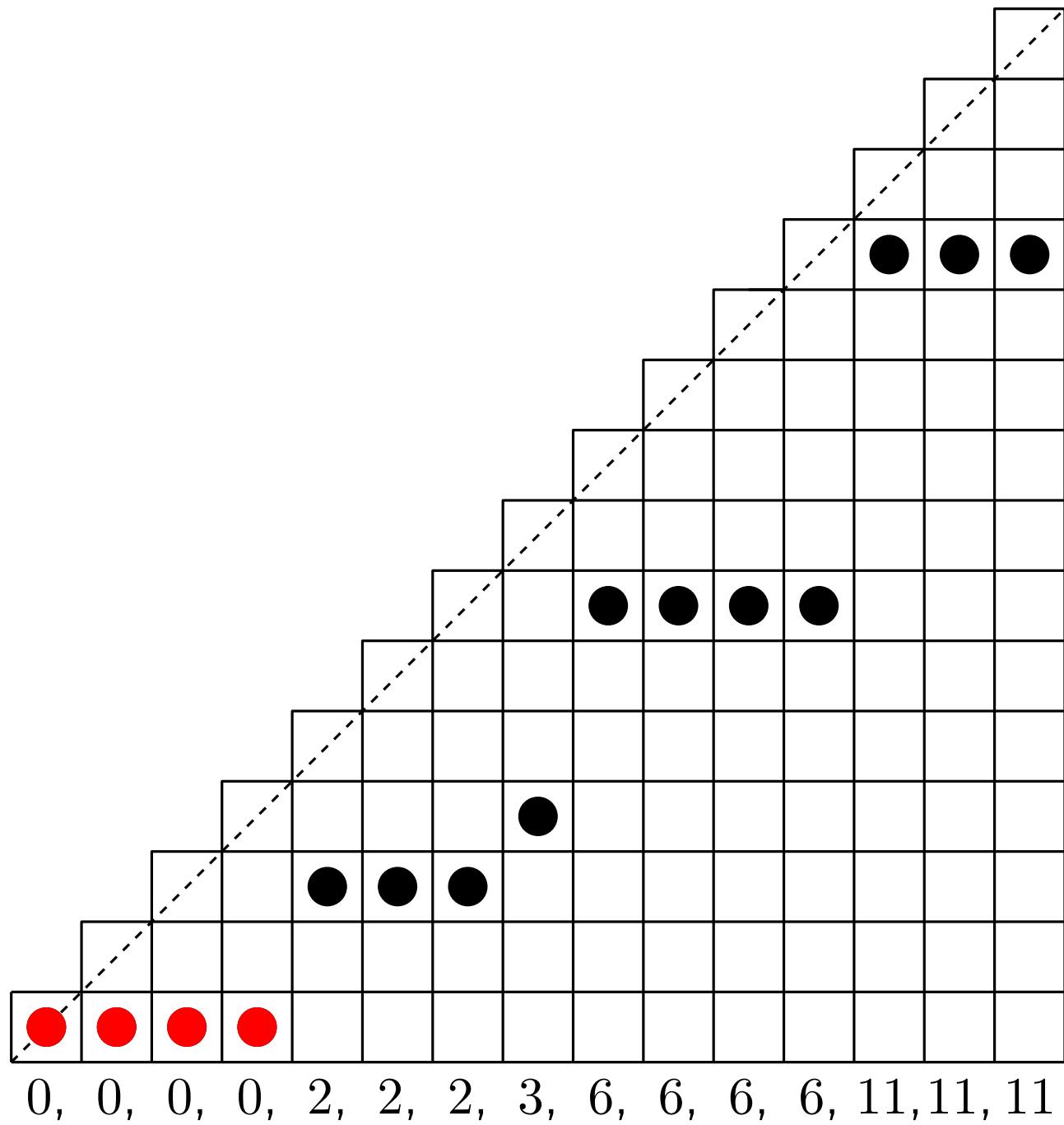
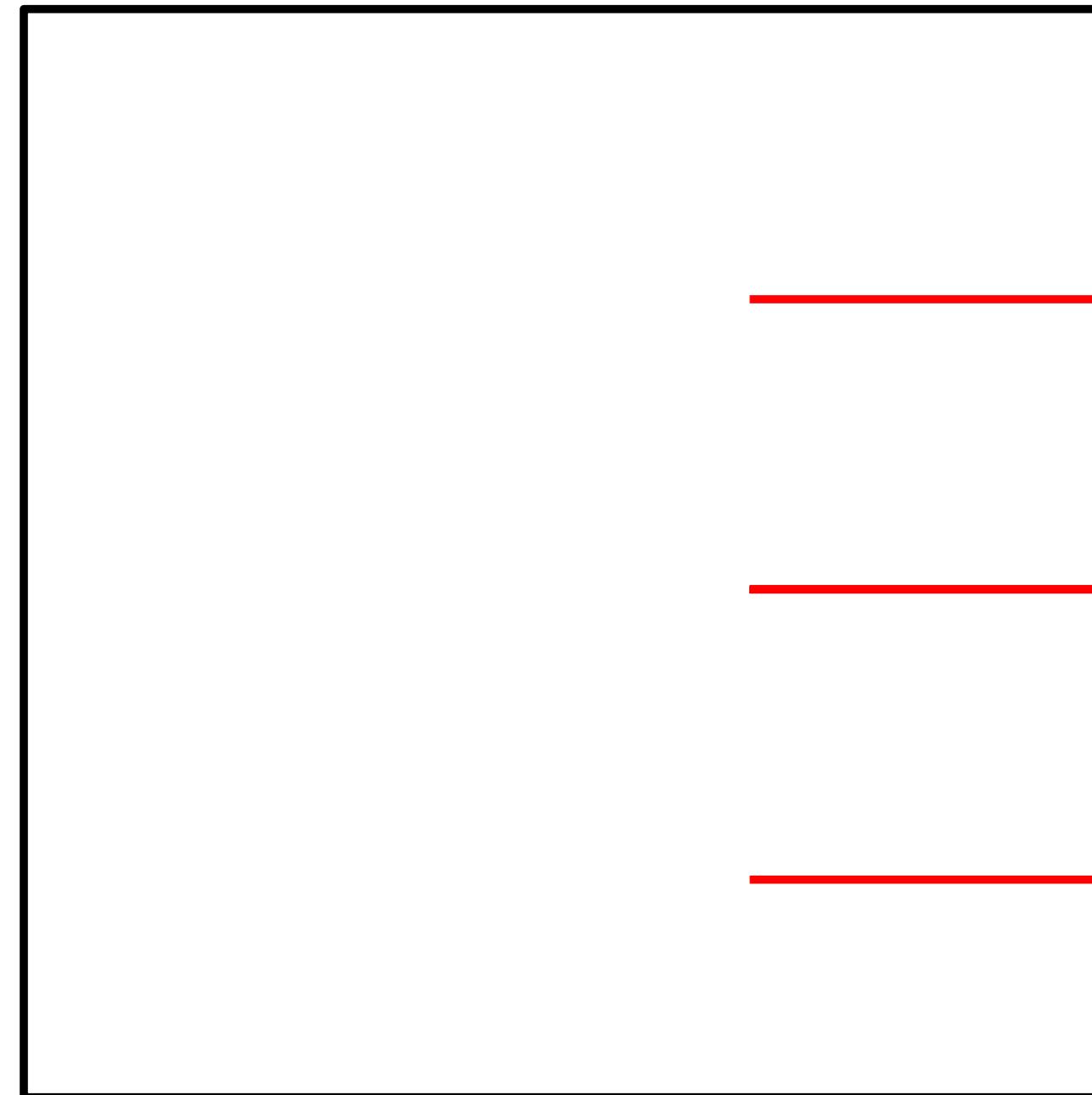
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



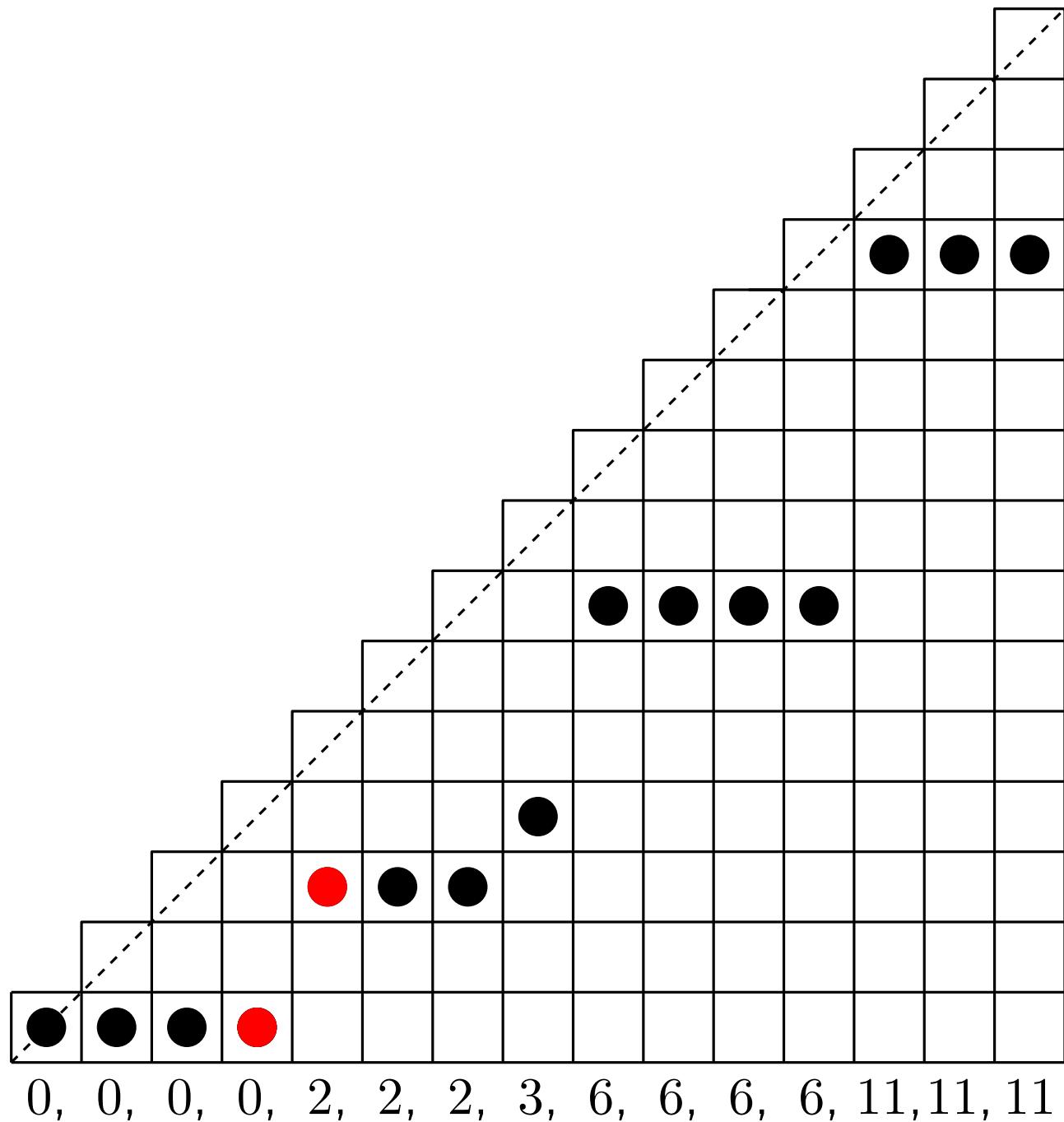
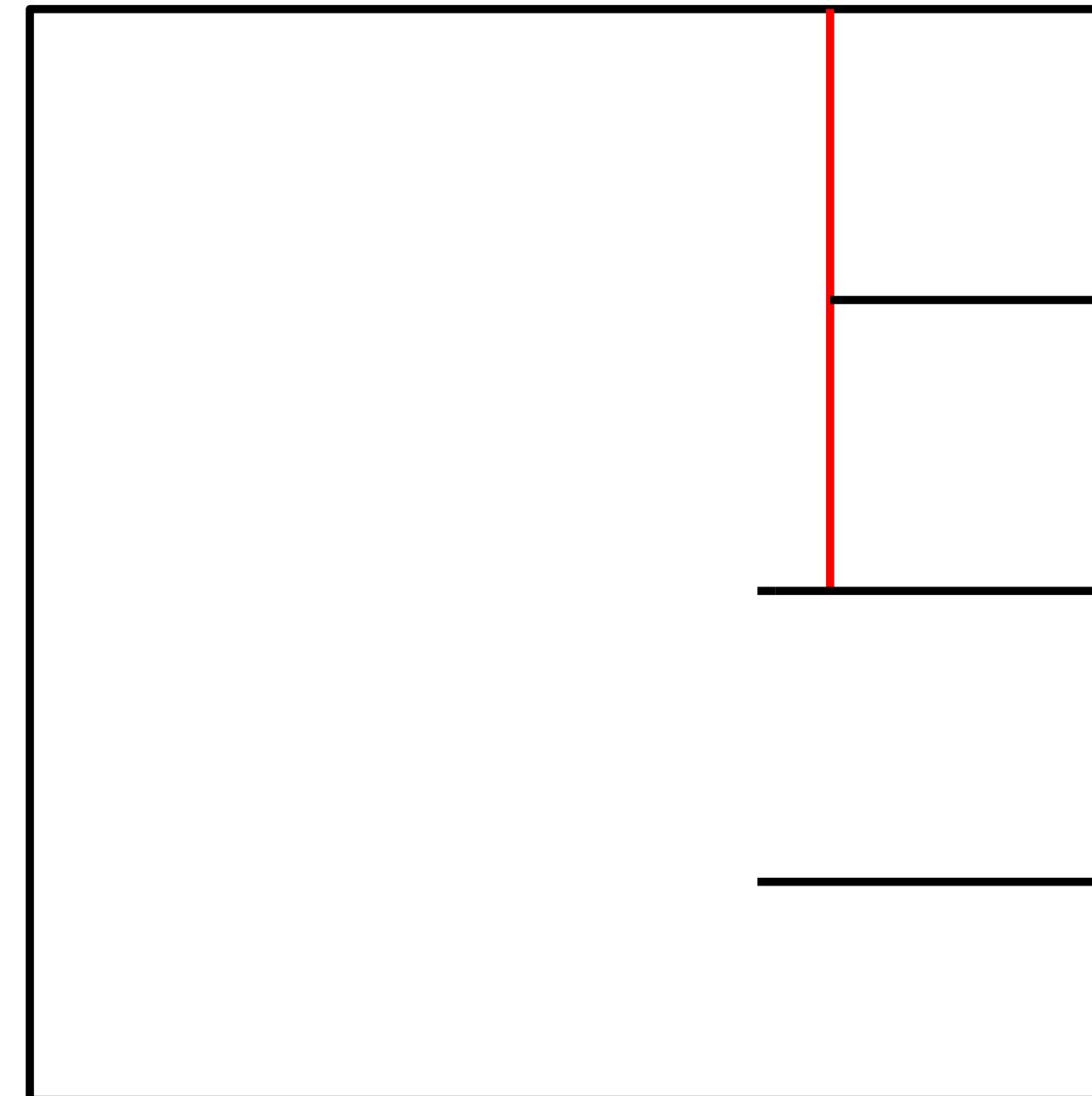
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



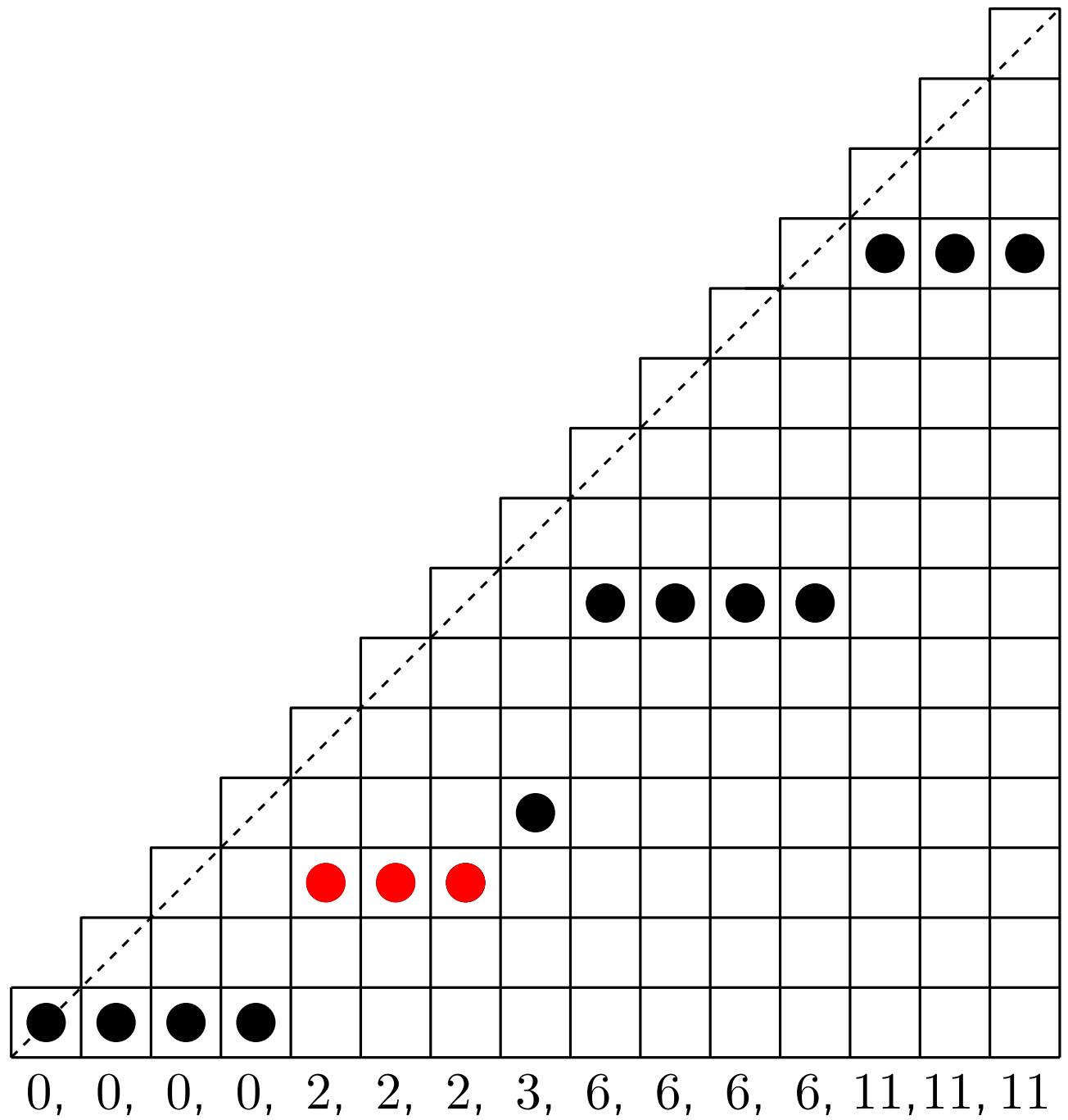
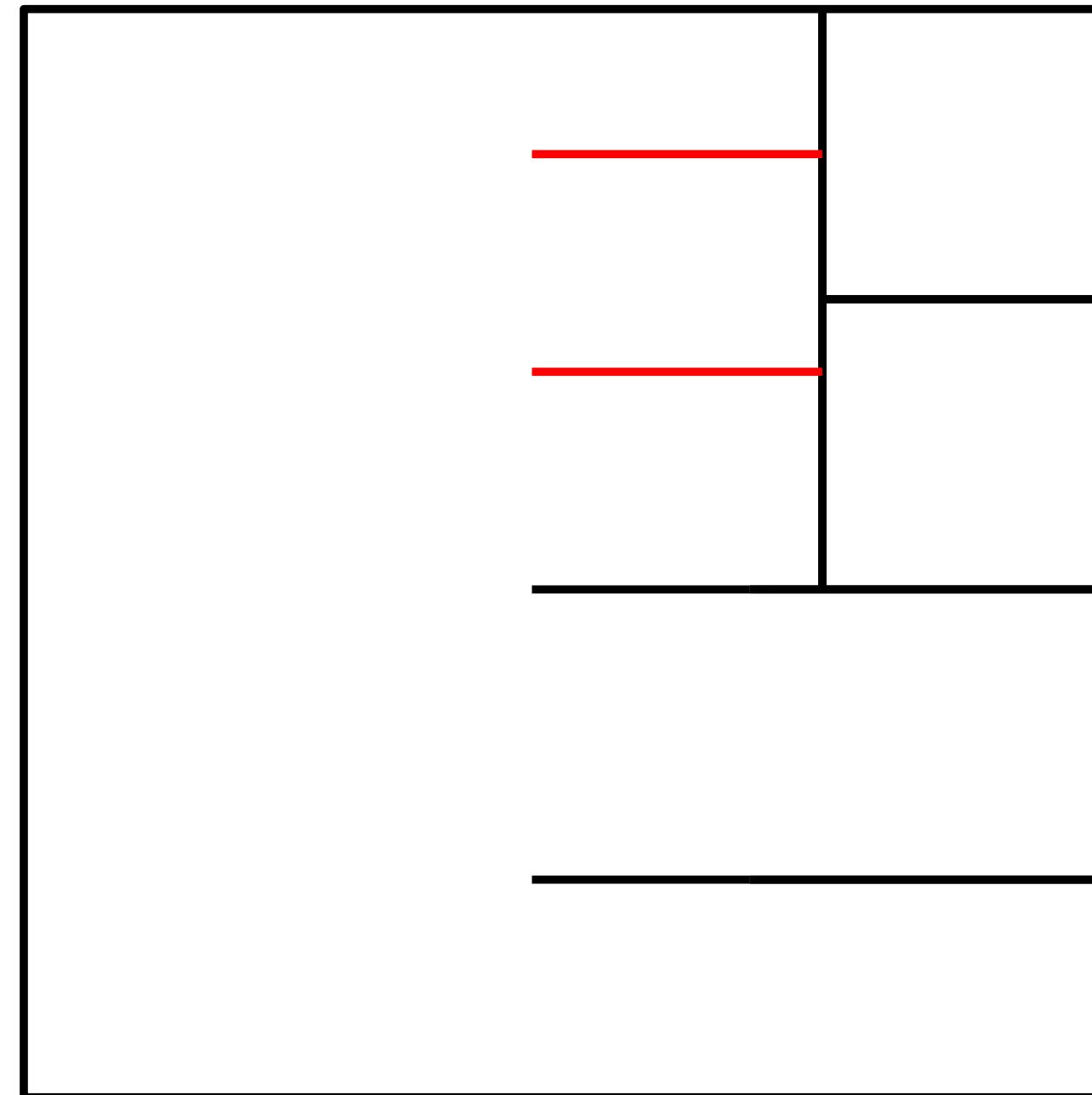
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



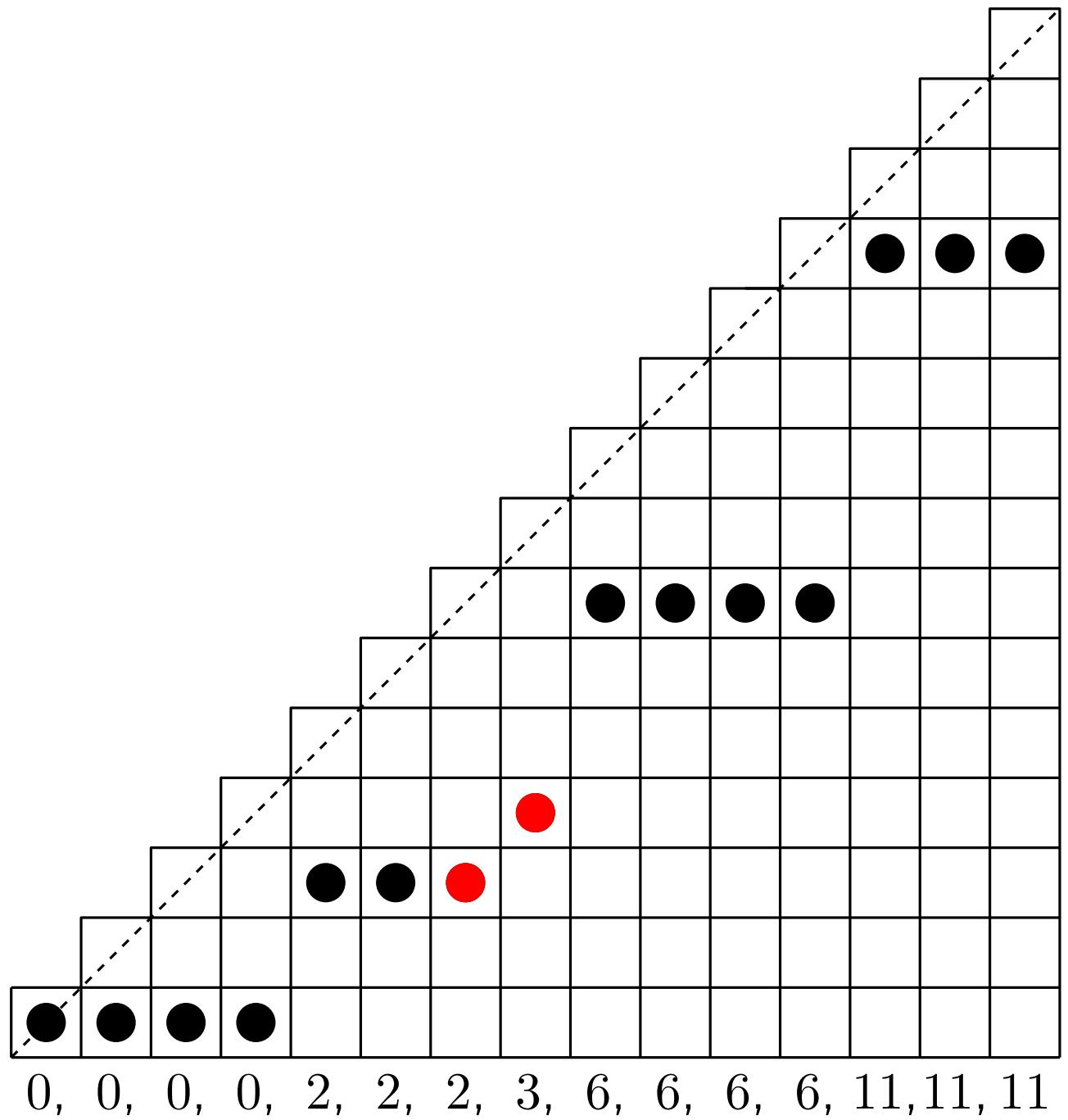
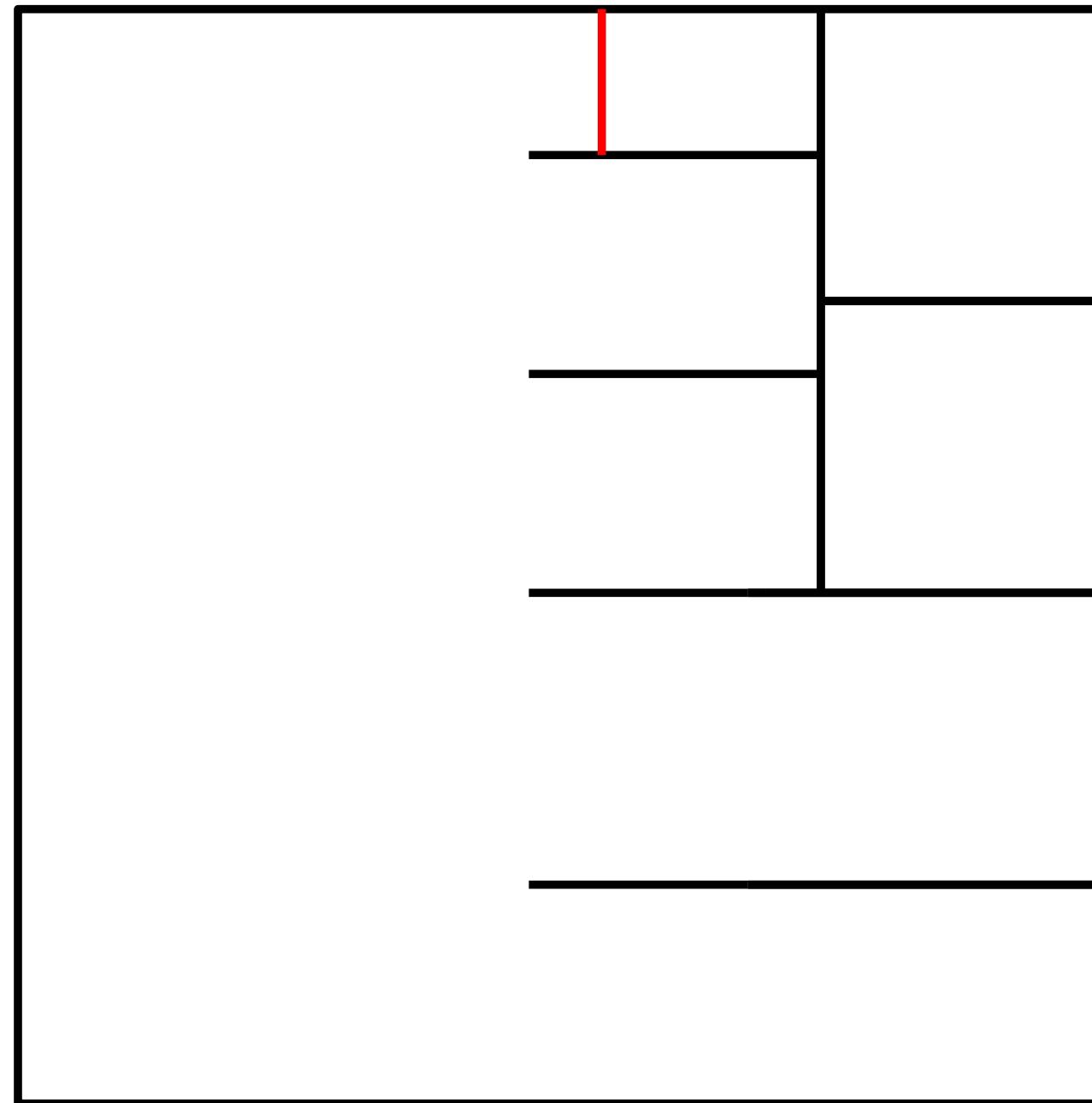
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



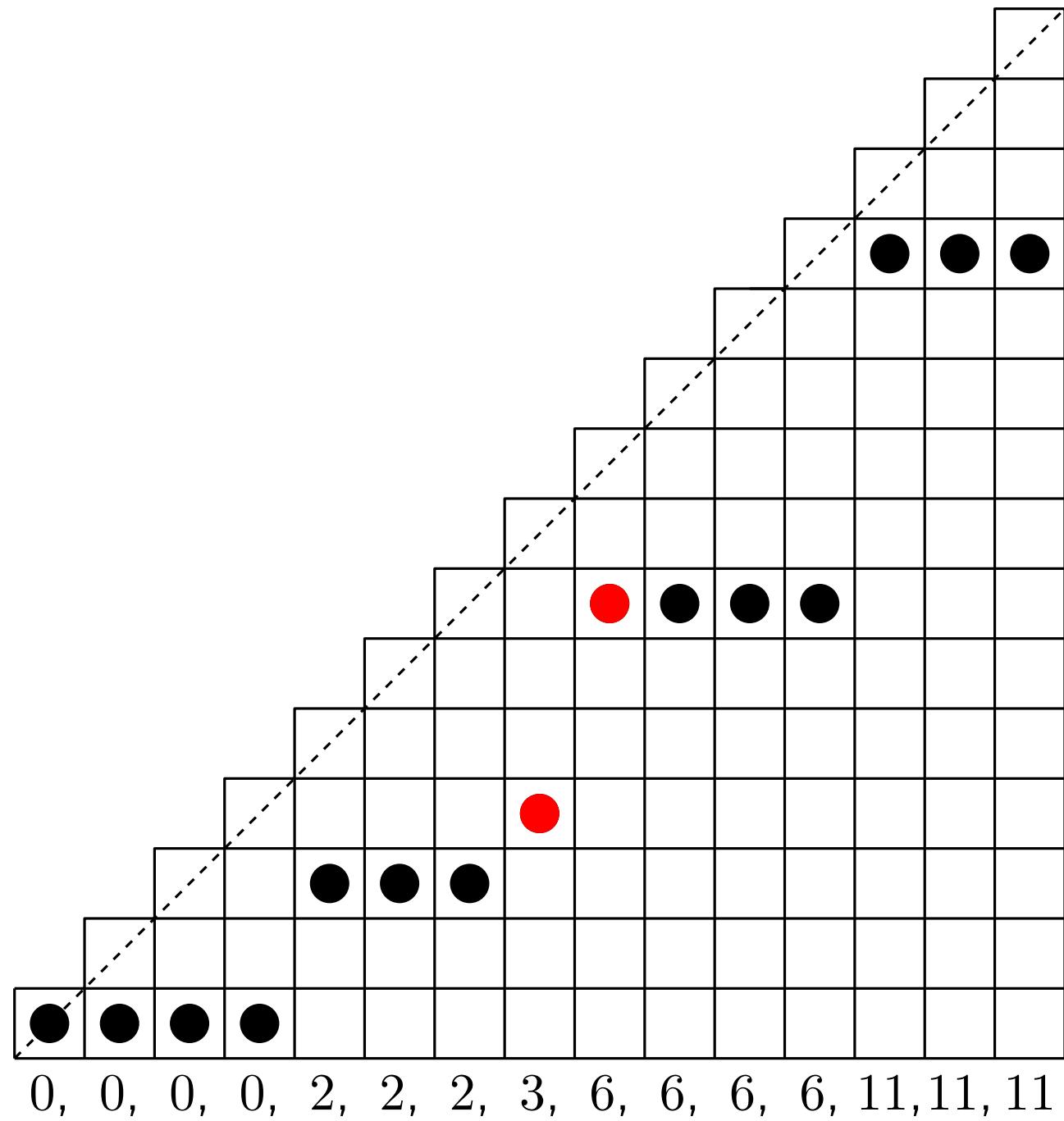
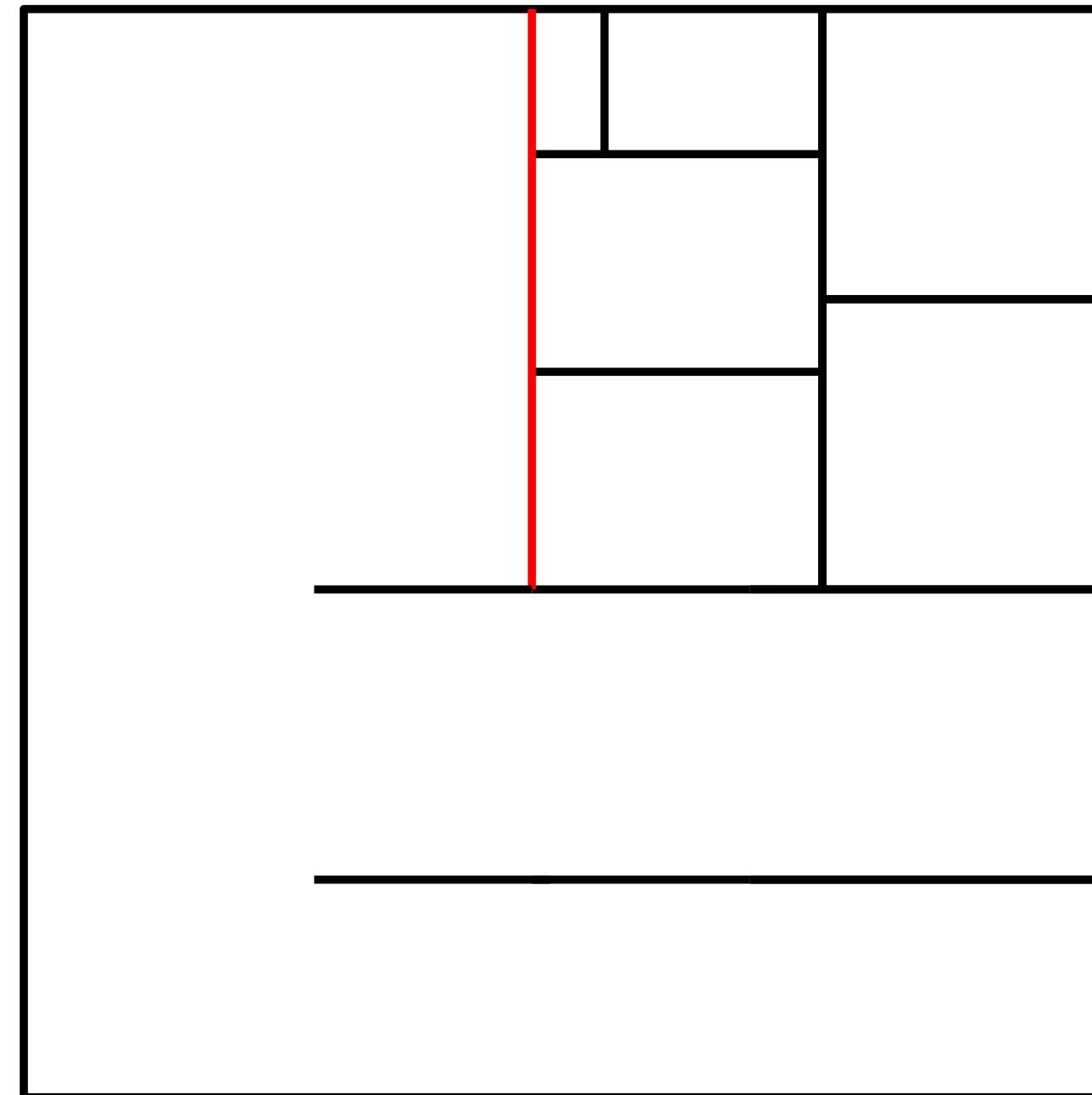
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



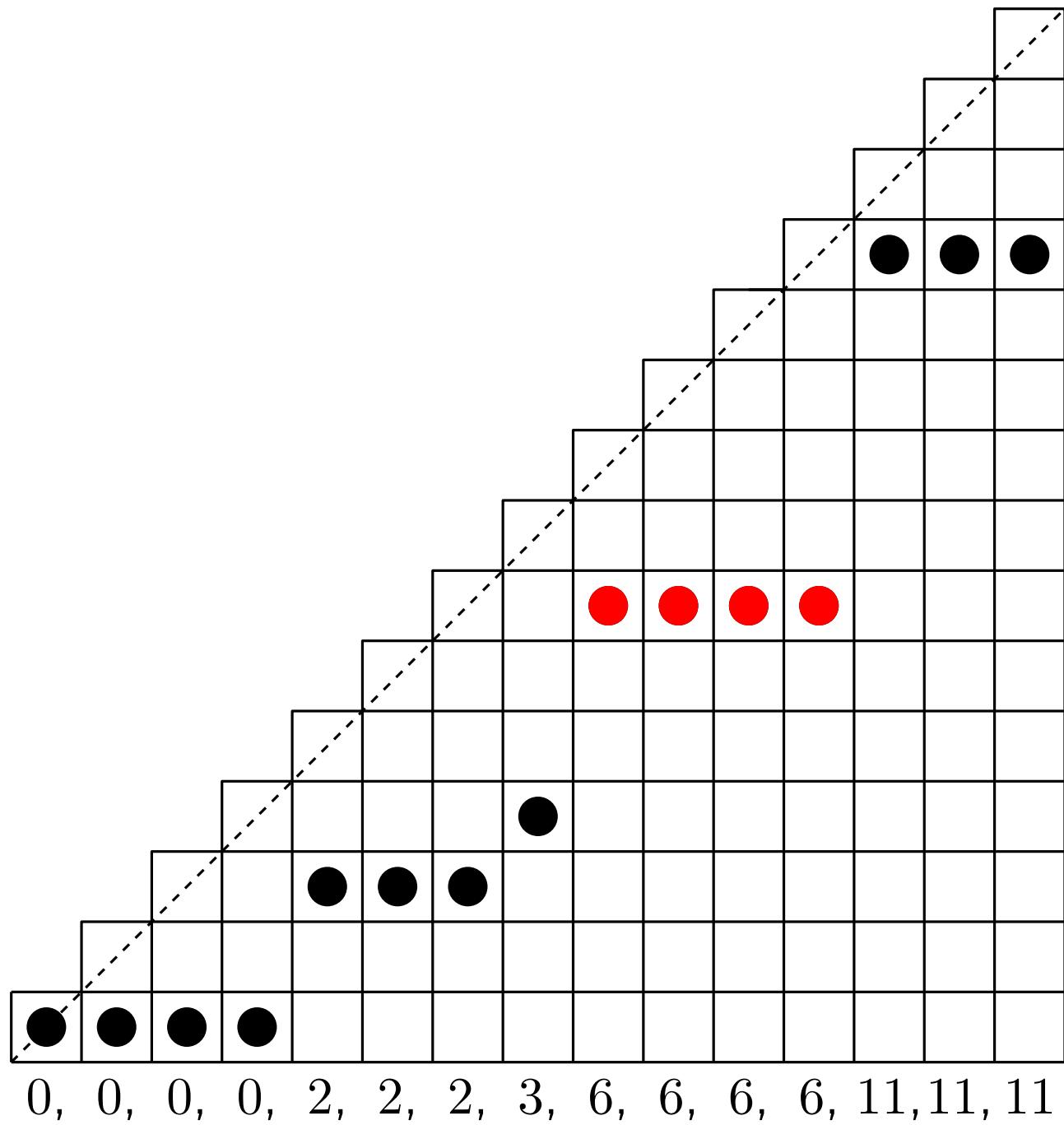
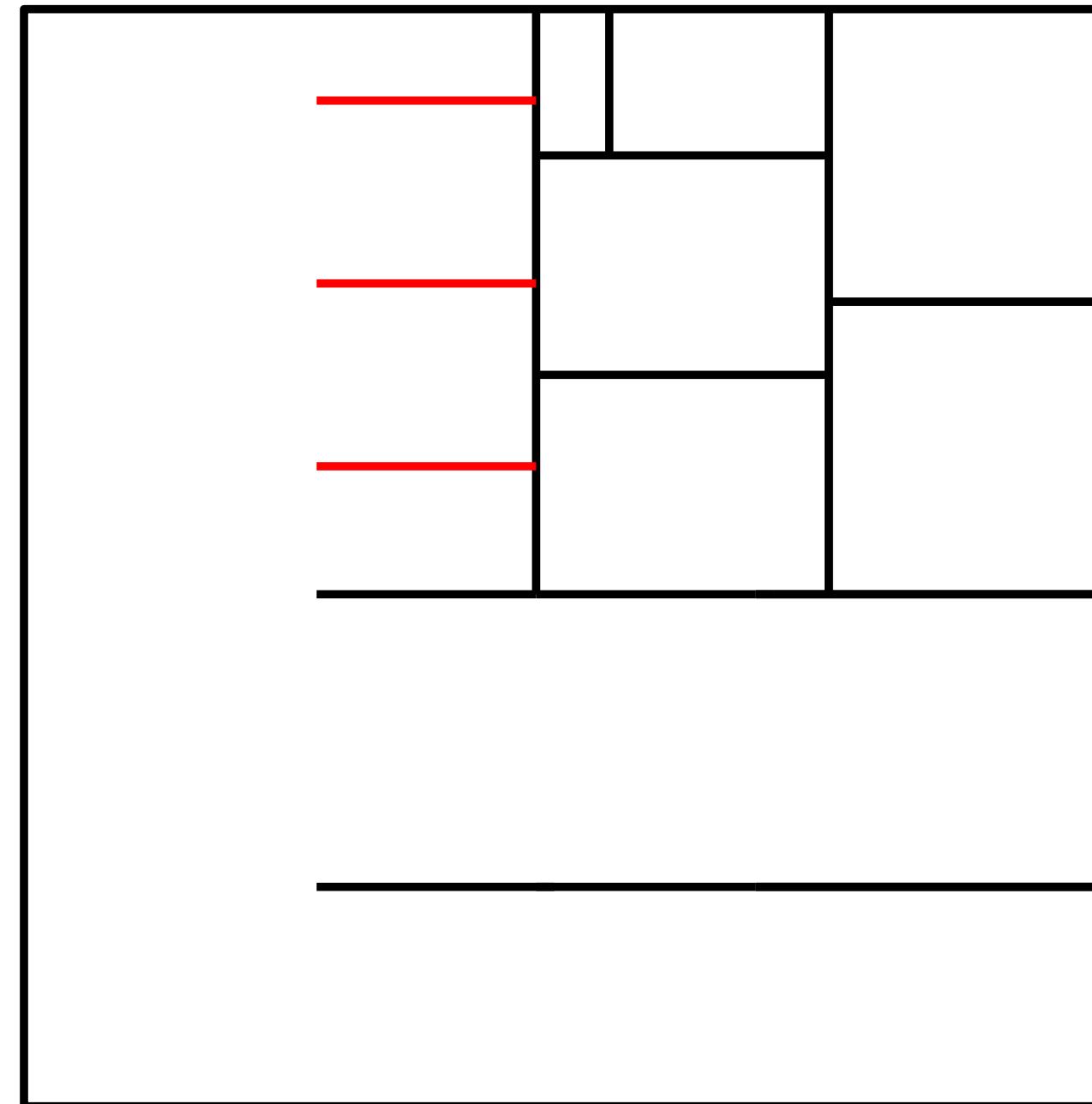
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



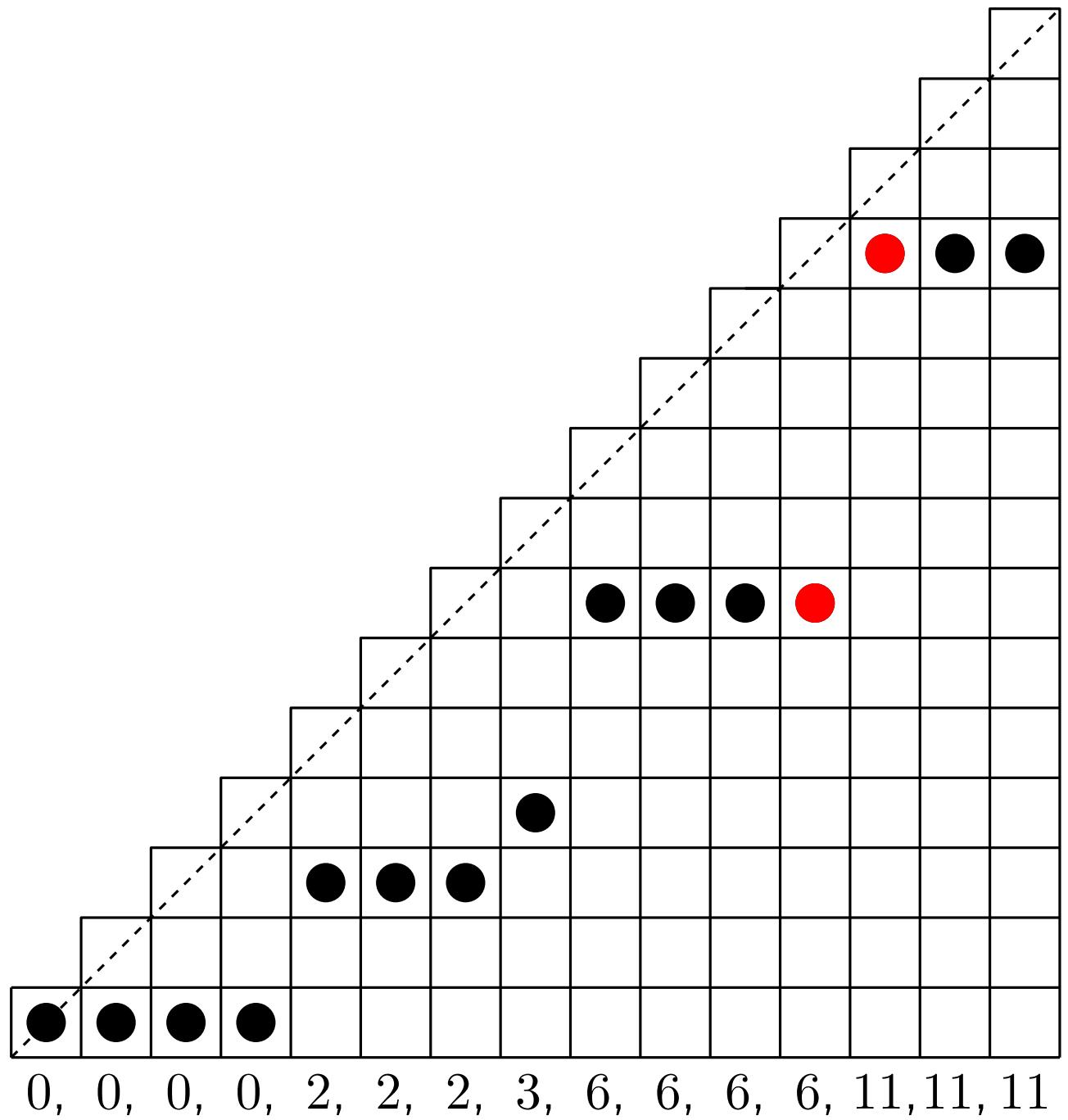
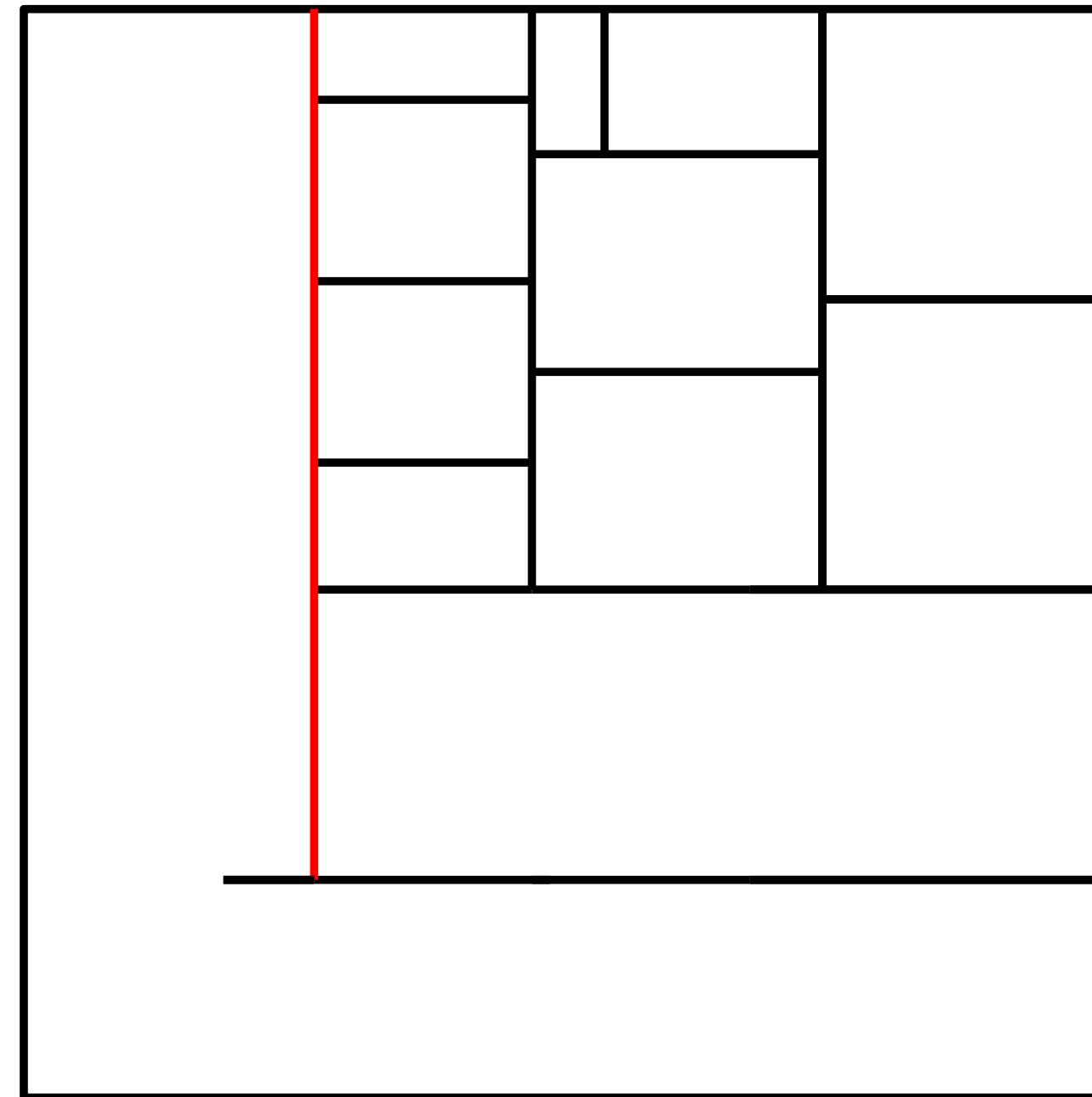
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



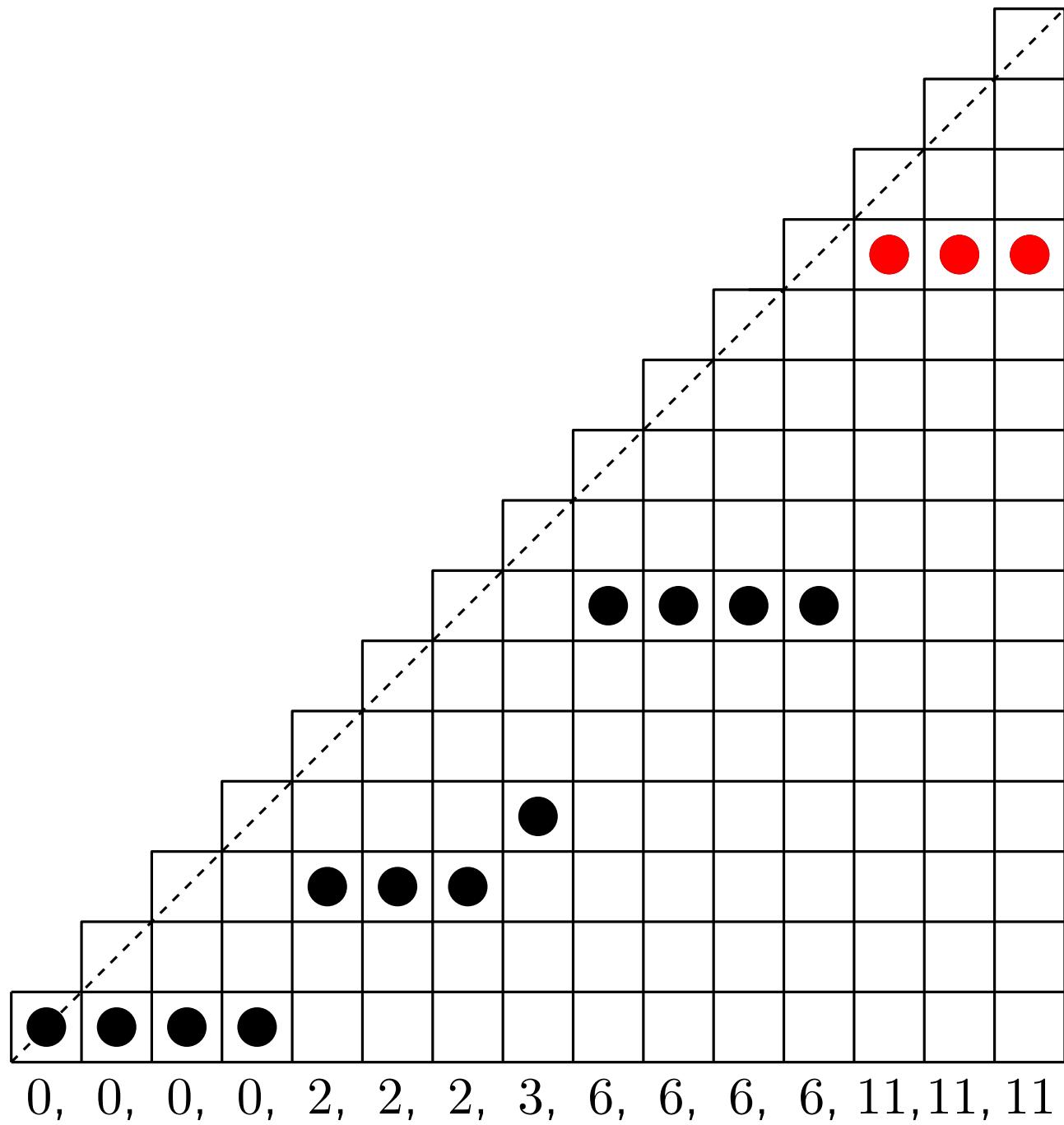
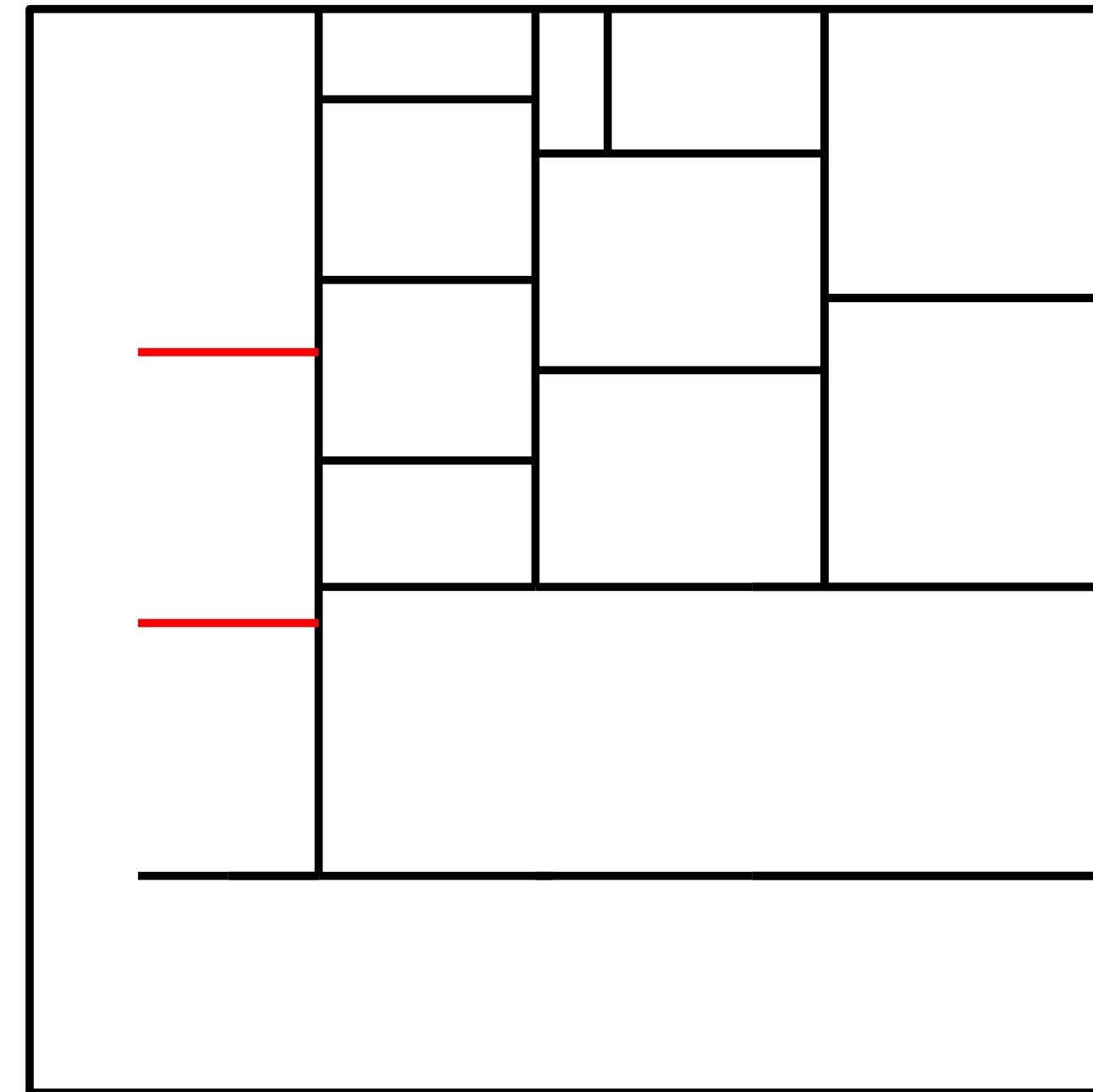
Theorem 1 (Williams): $|R_n^w(\top)| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



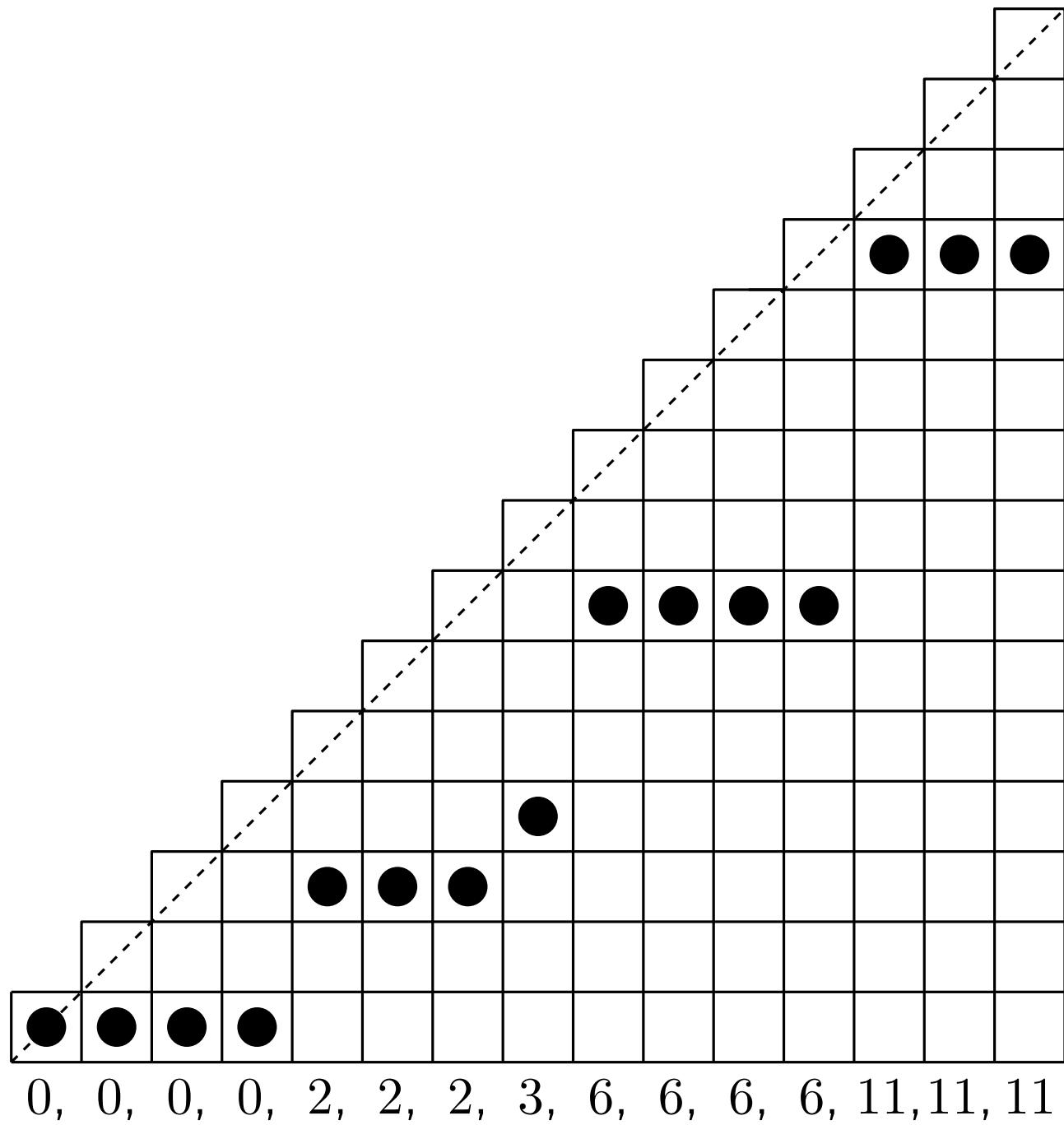
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



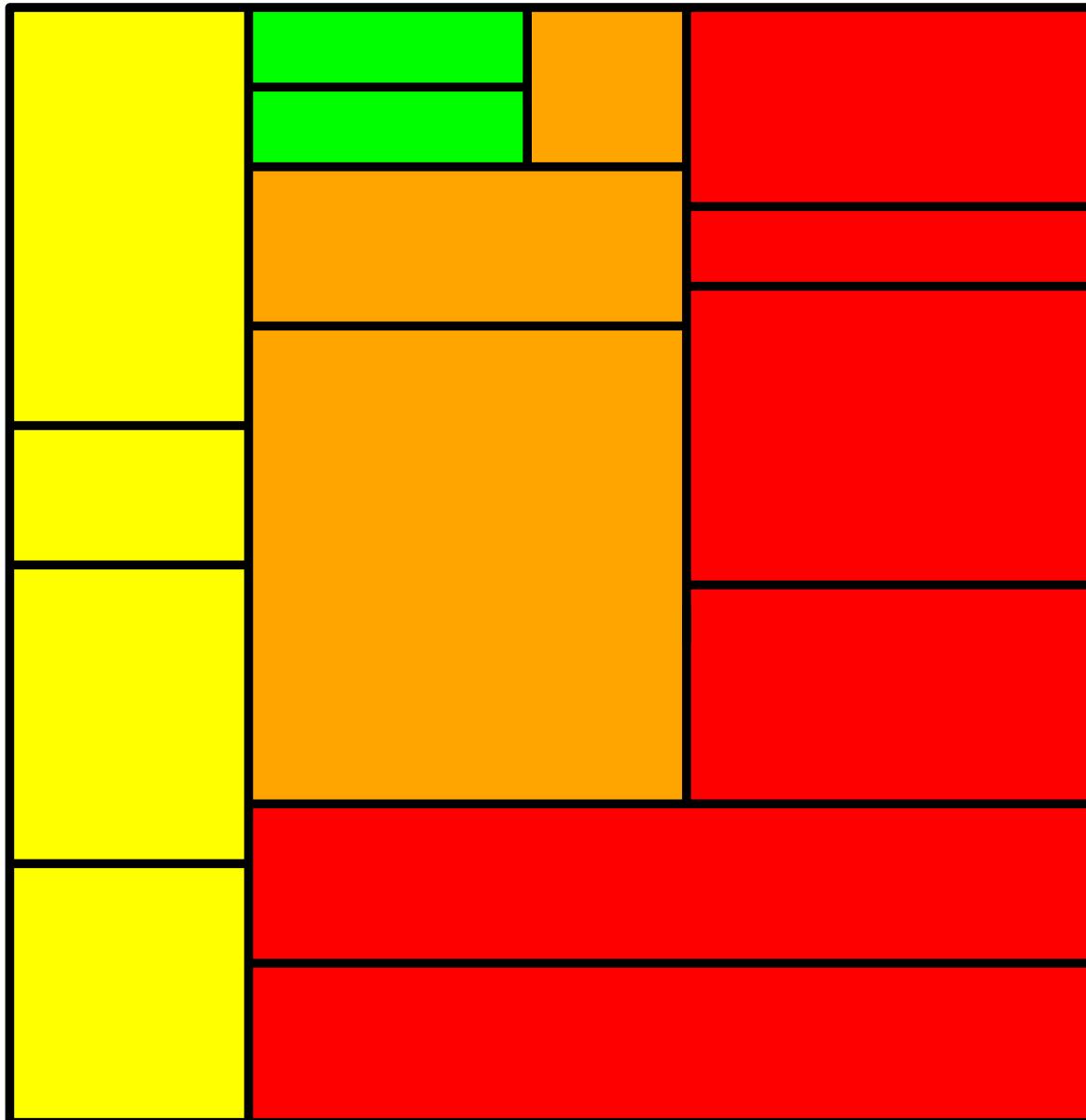
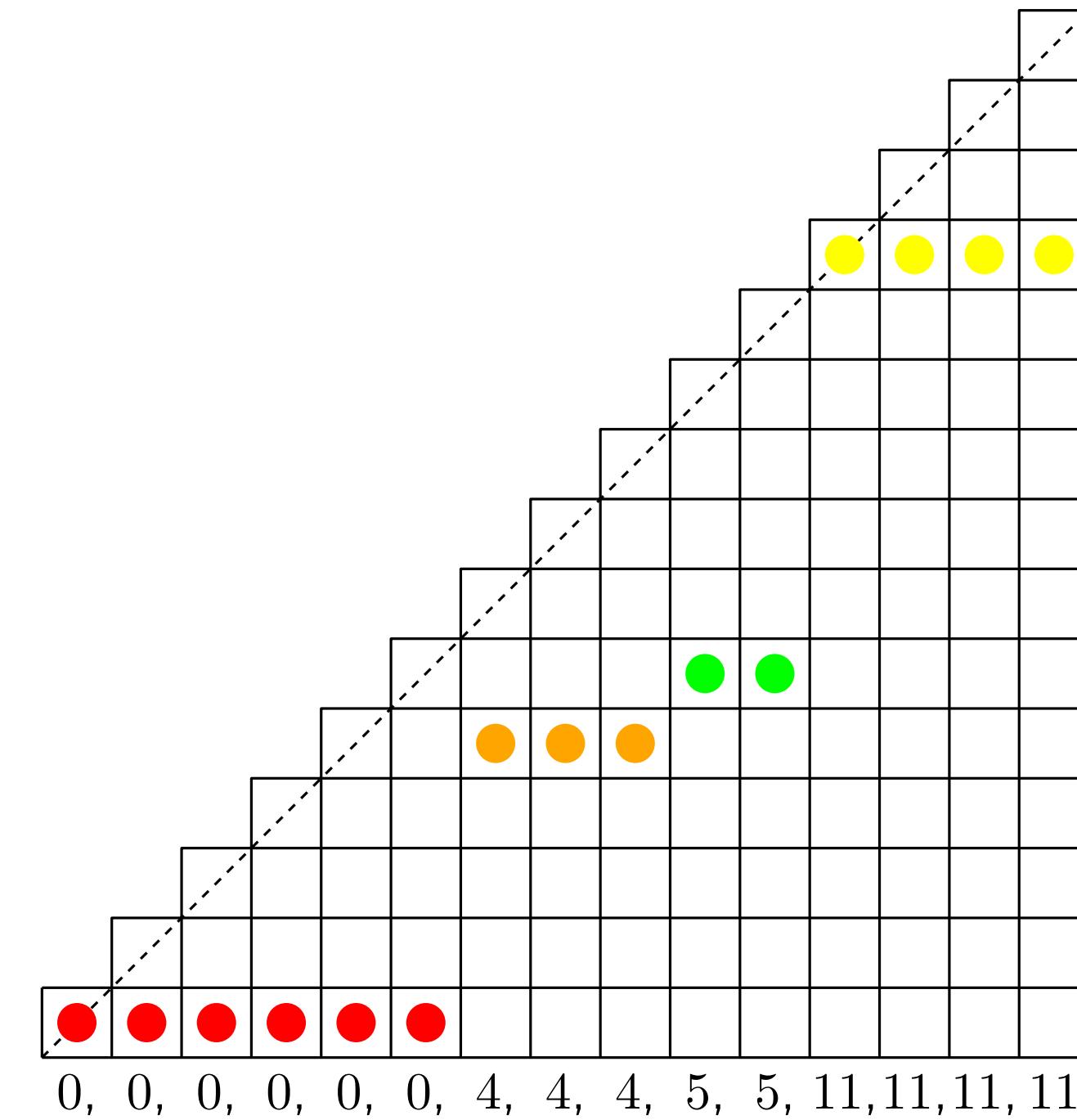
Theorem 1 (Williams): $|R_n^w(\mathsf{T})| = C_n$

Proof: Bijection to Dyck paths via non-decreasing inversion sequences



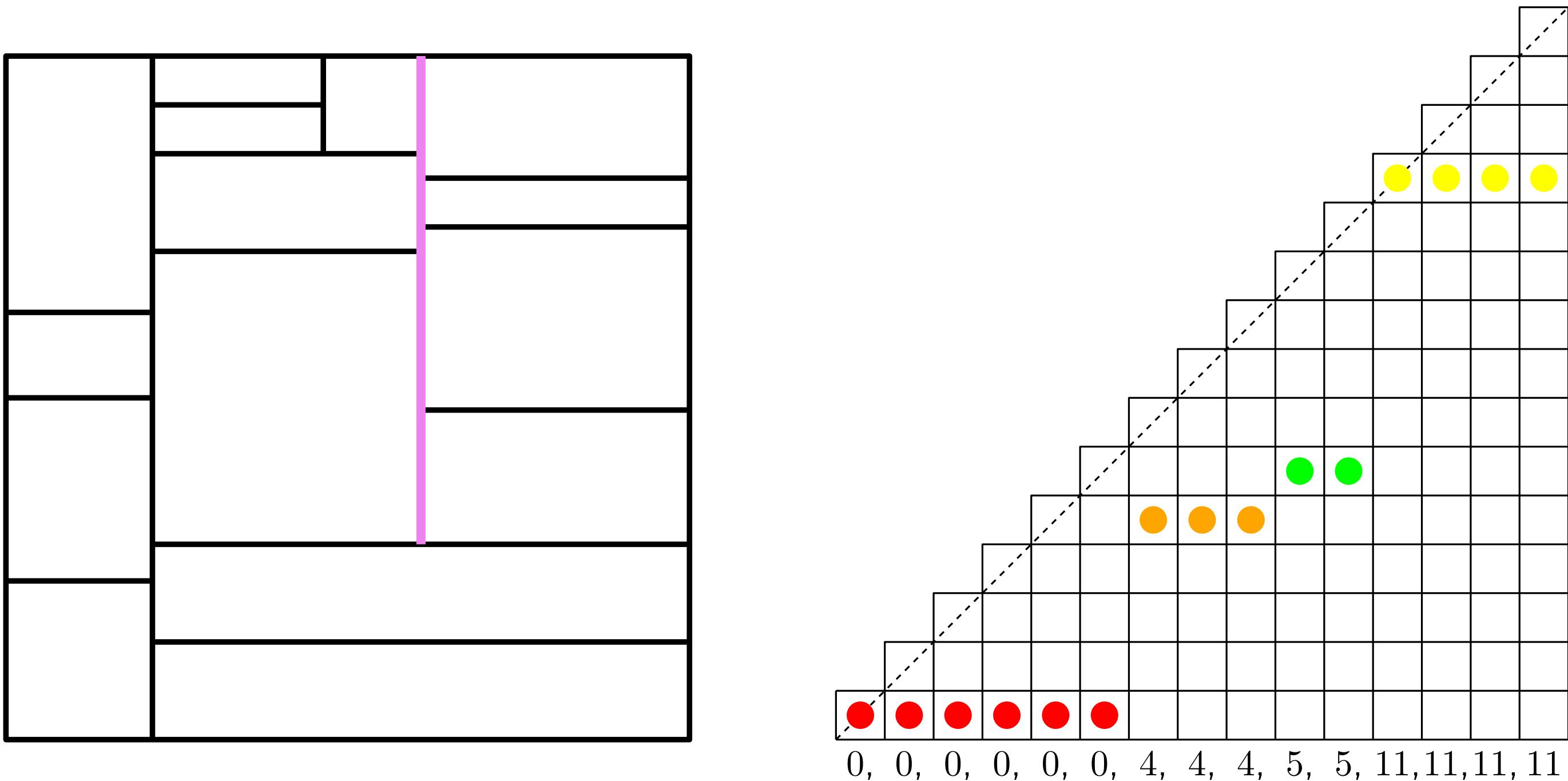
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



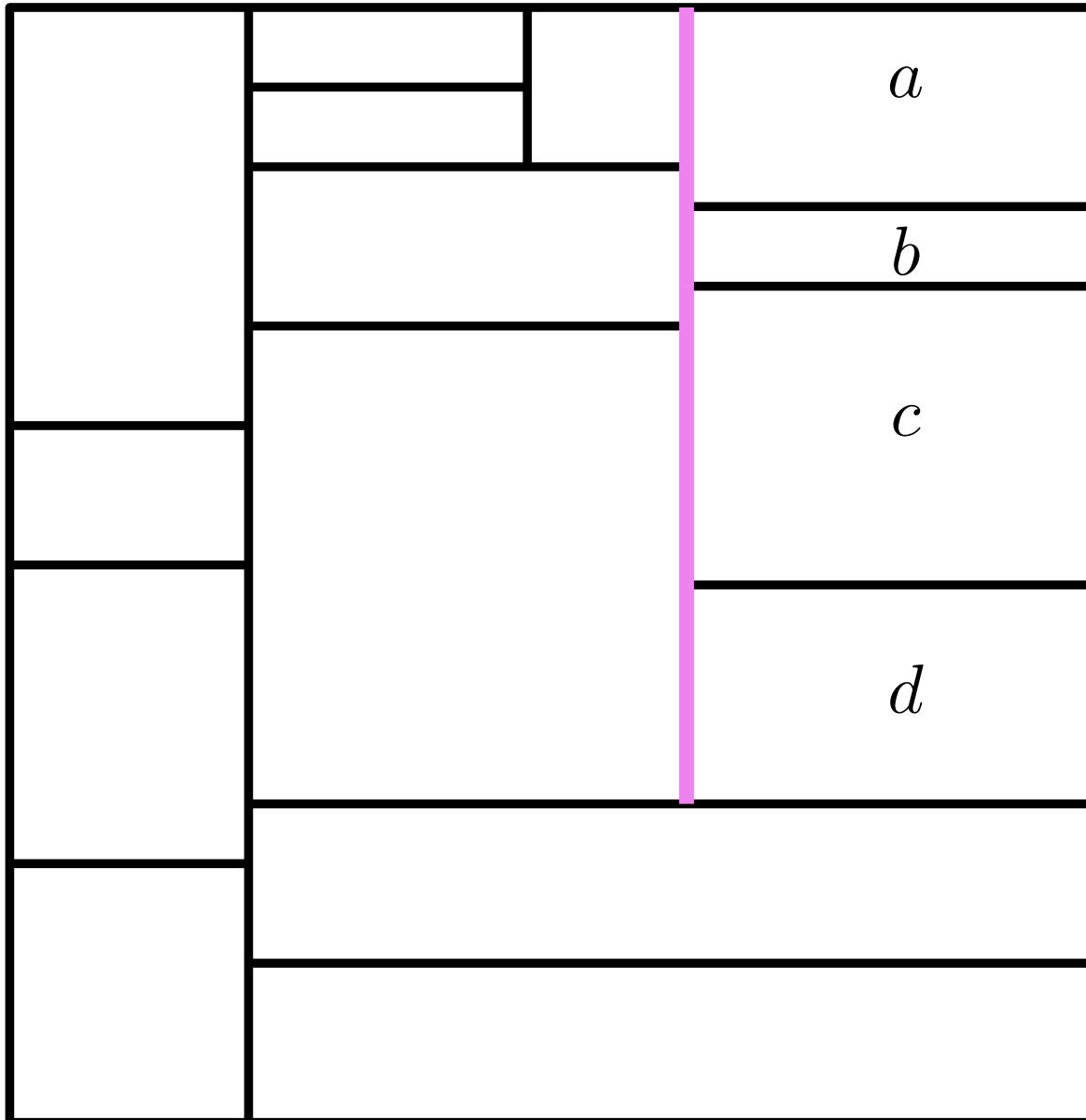
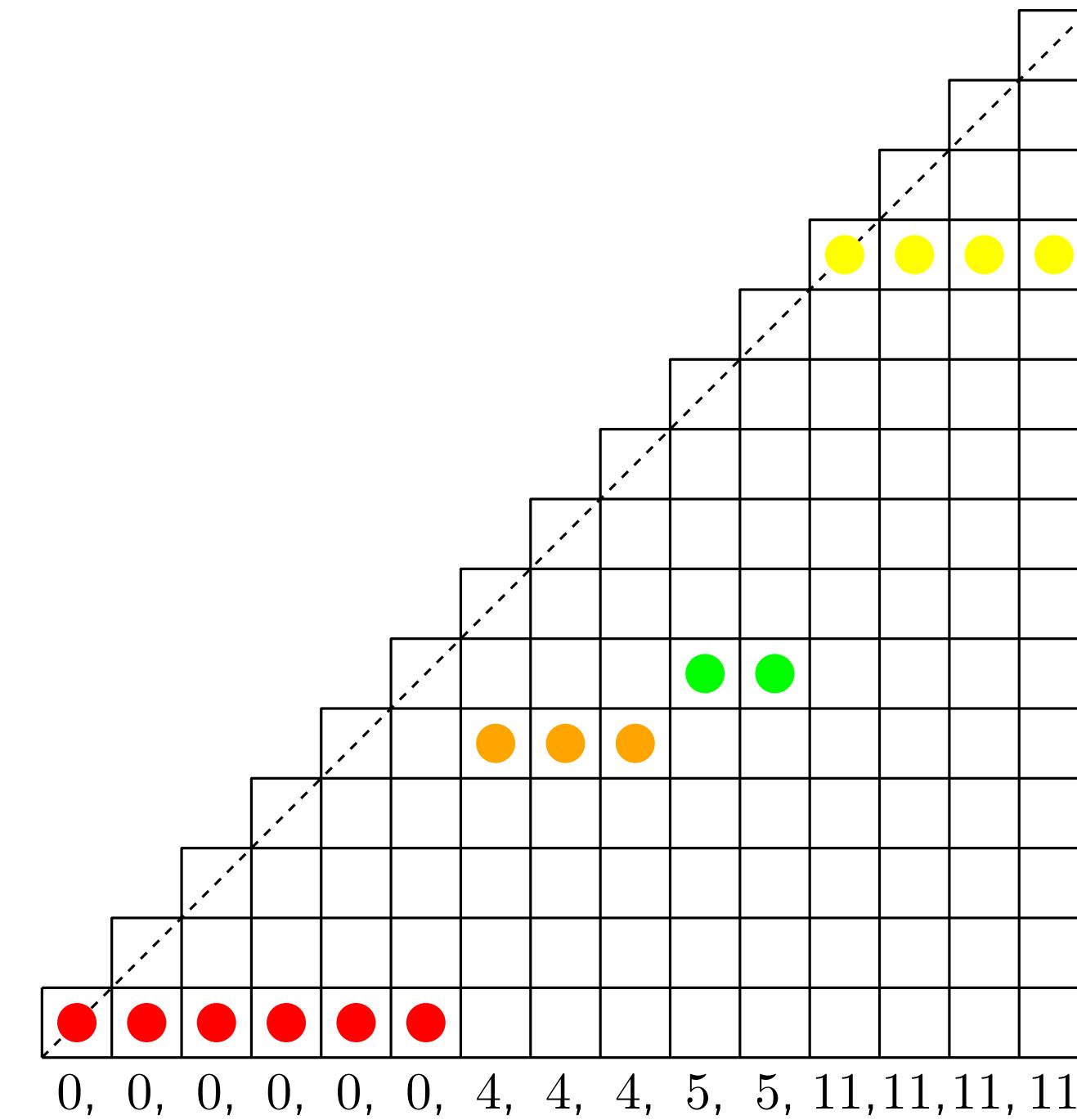
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



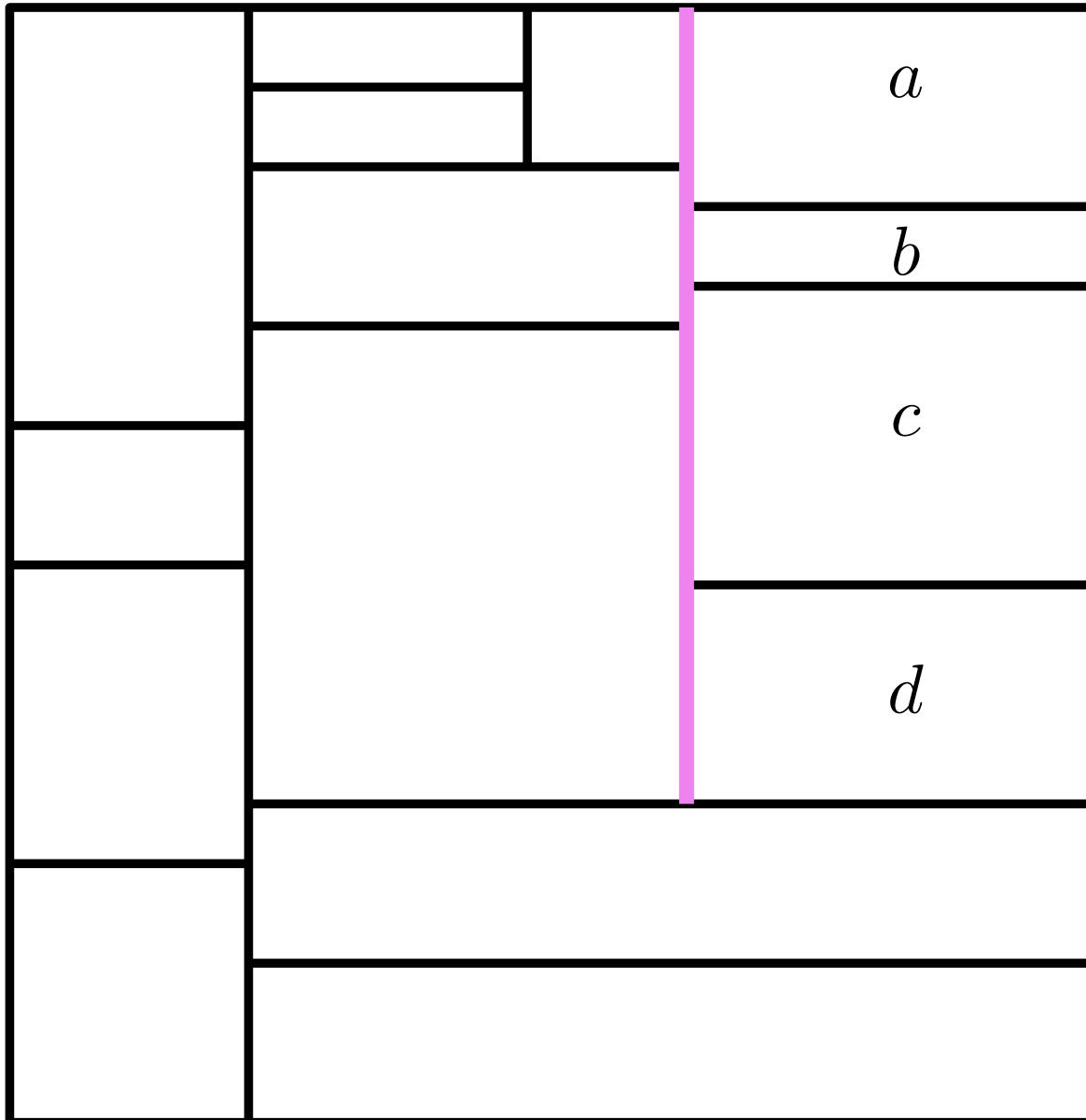
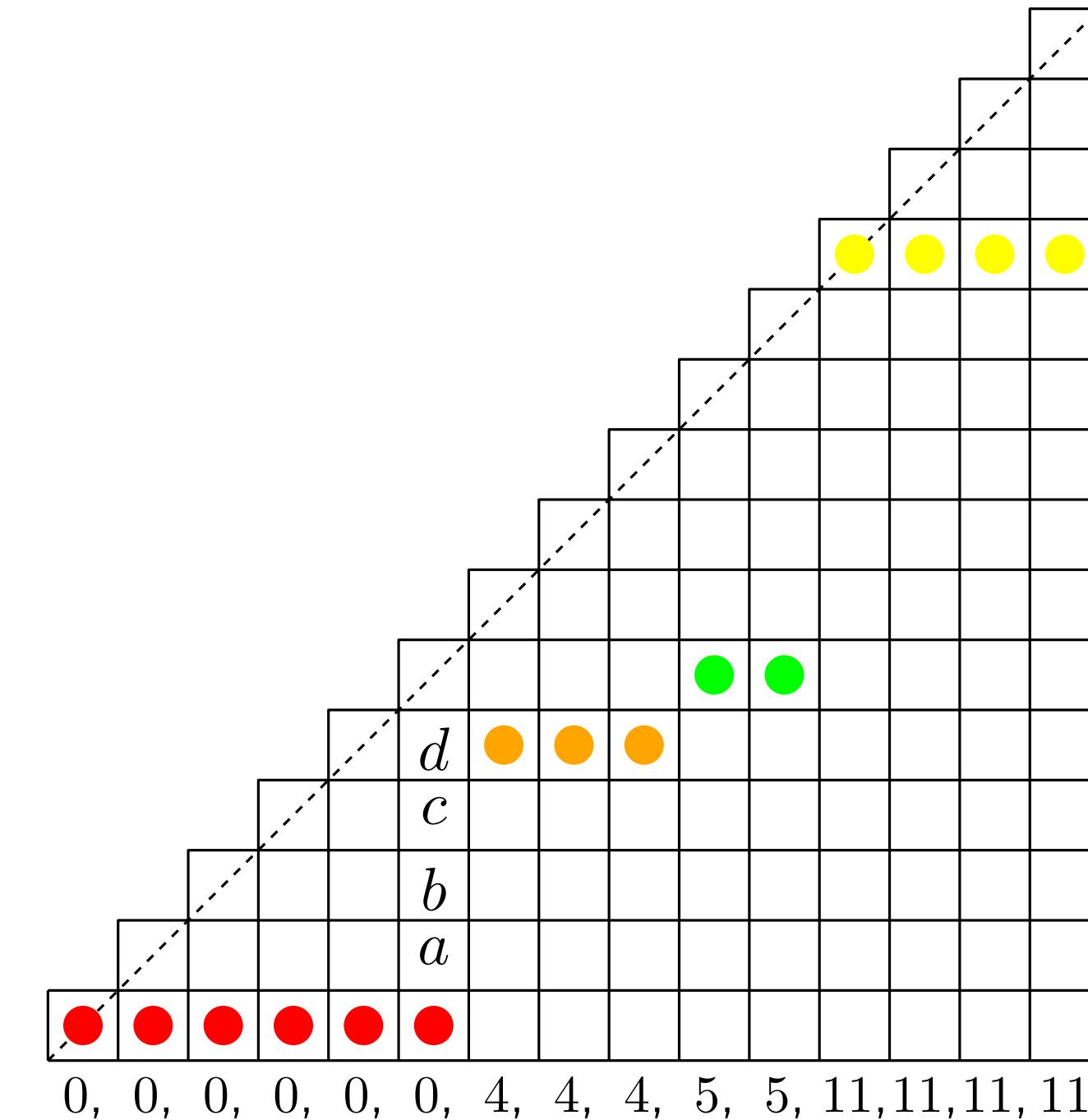
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



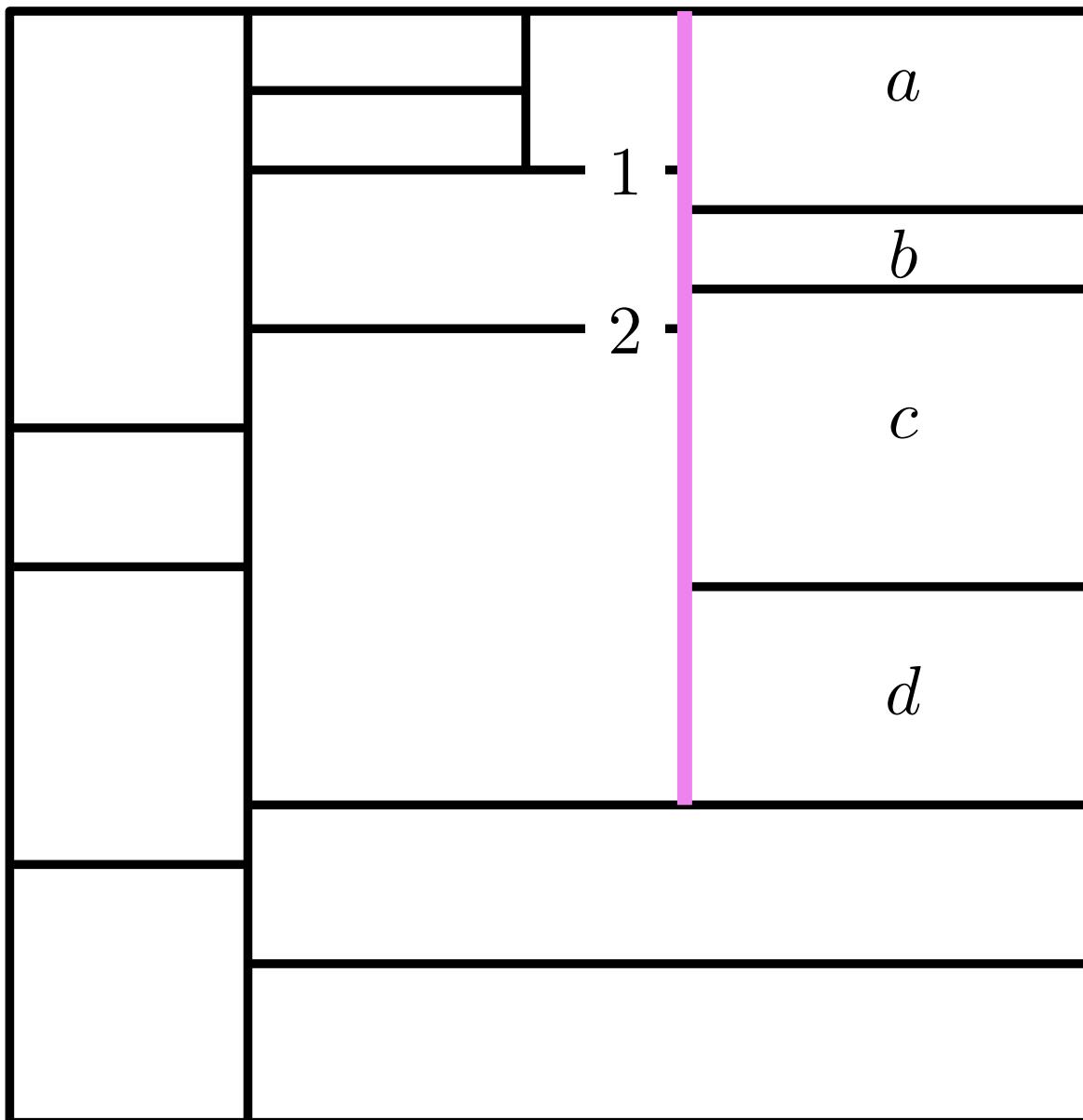
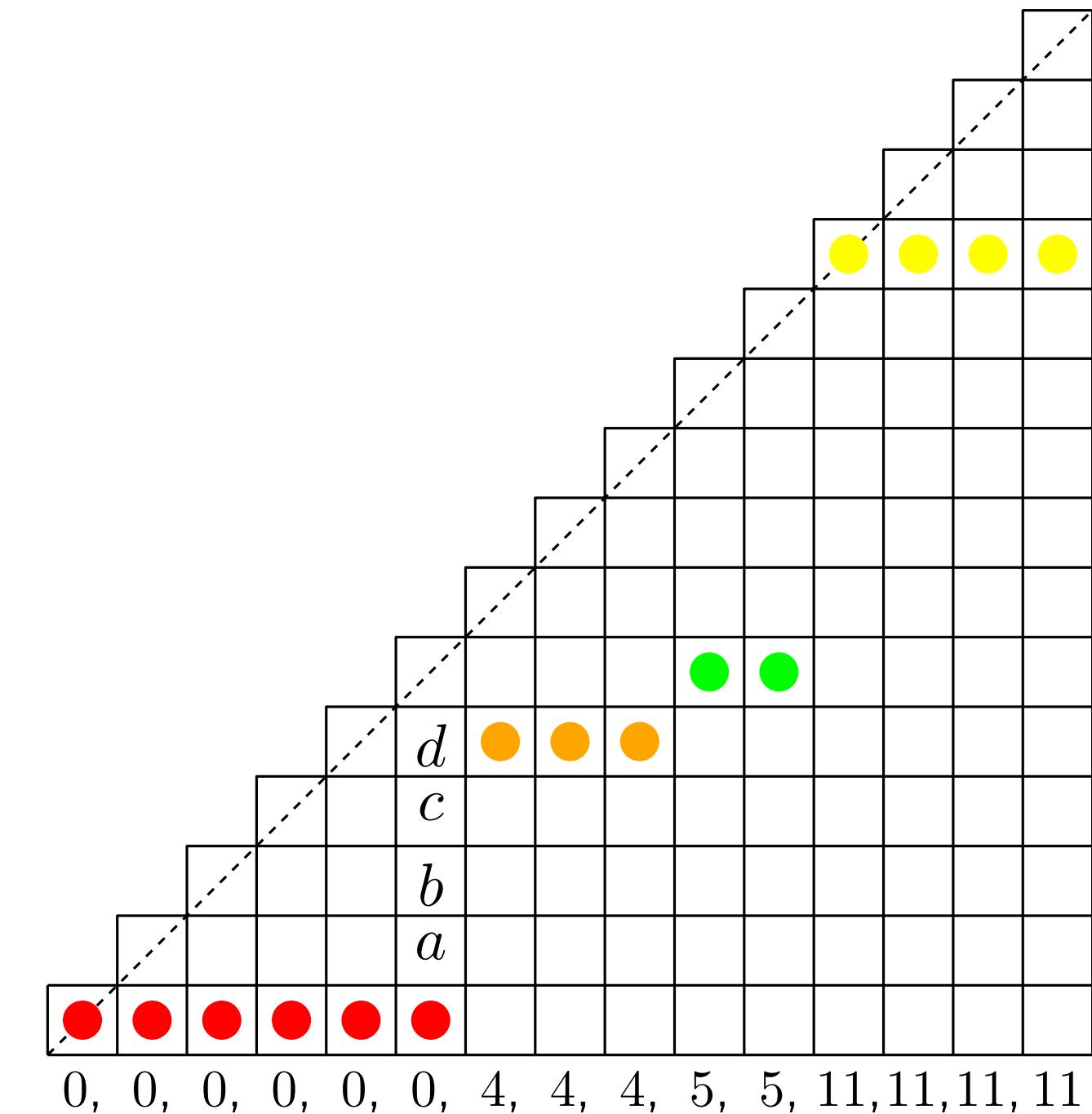
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



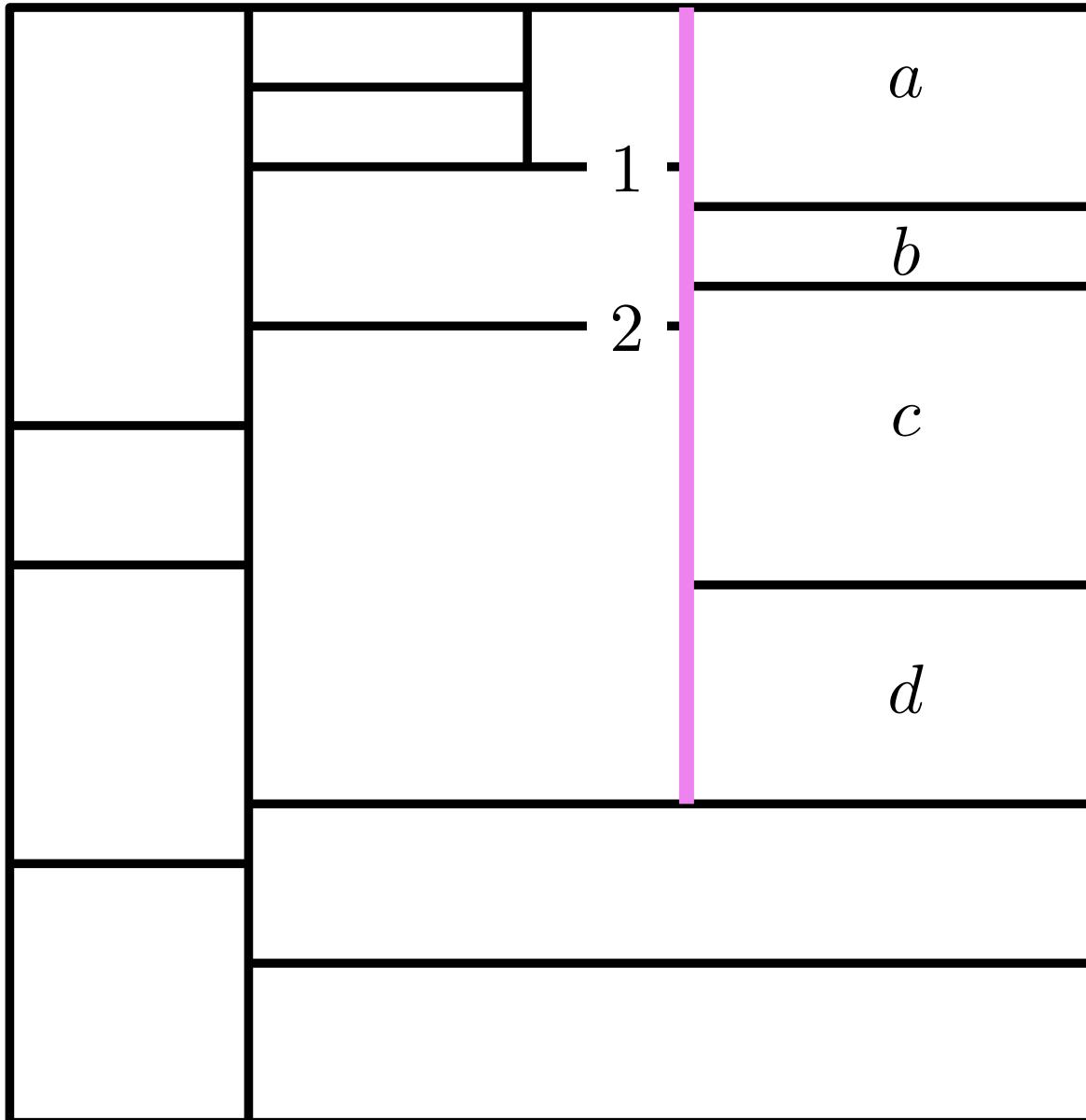
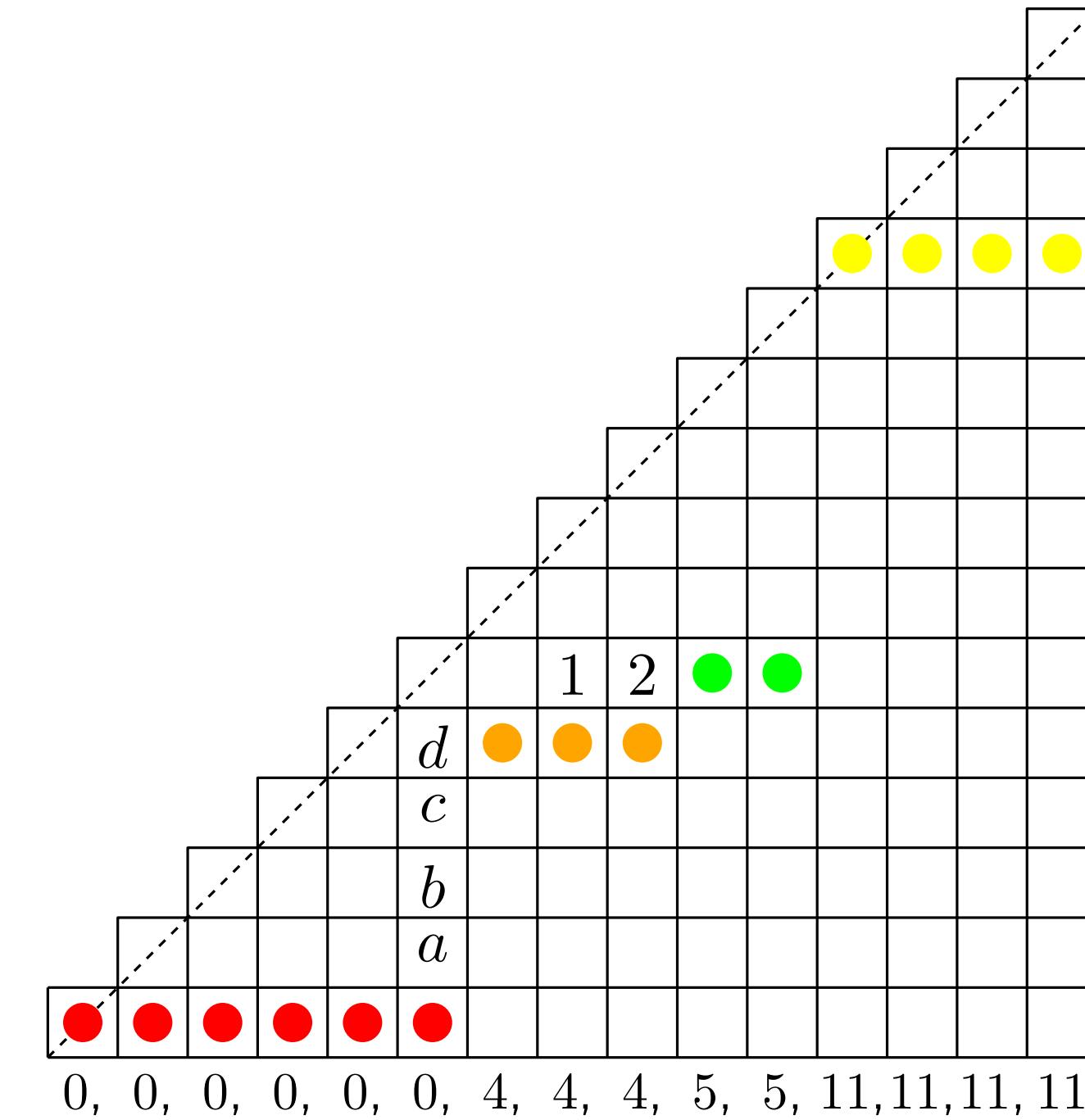
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



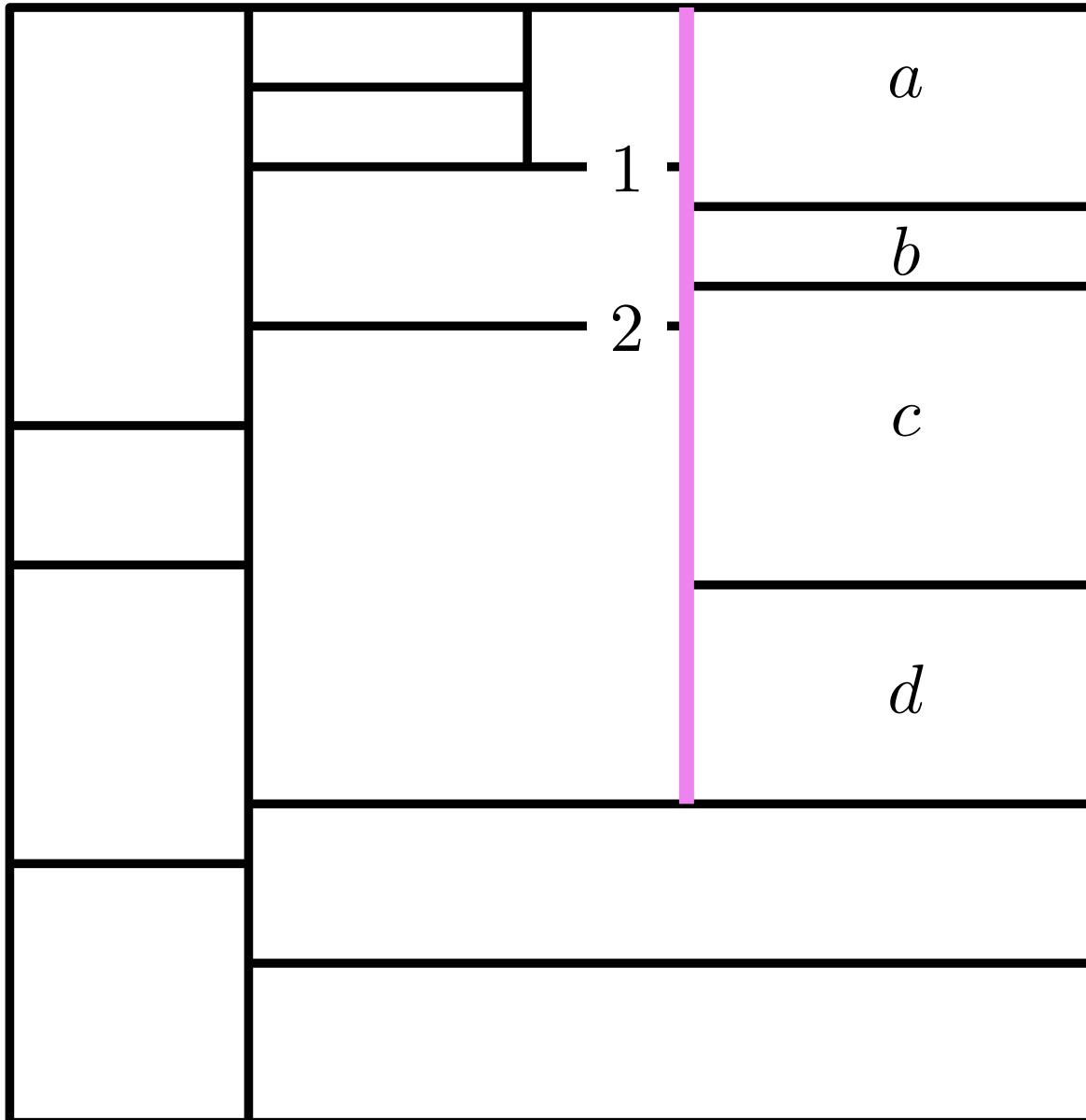
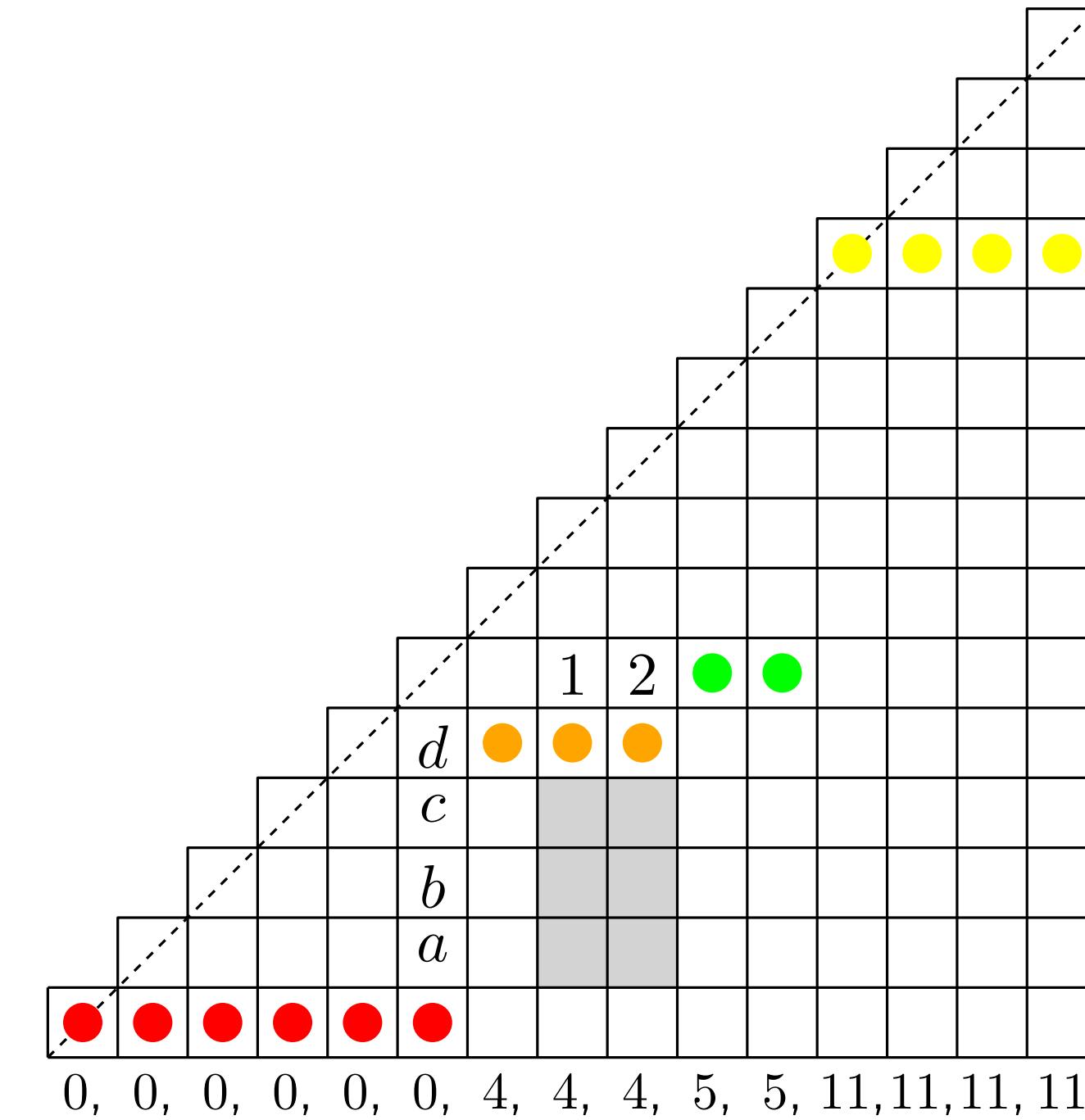
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



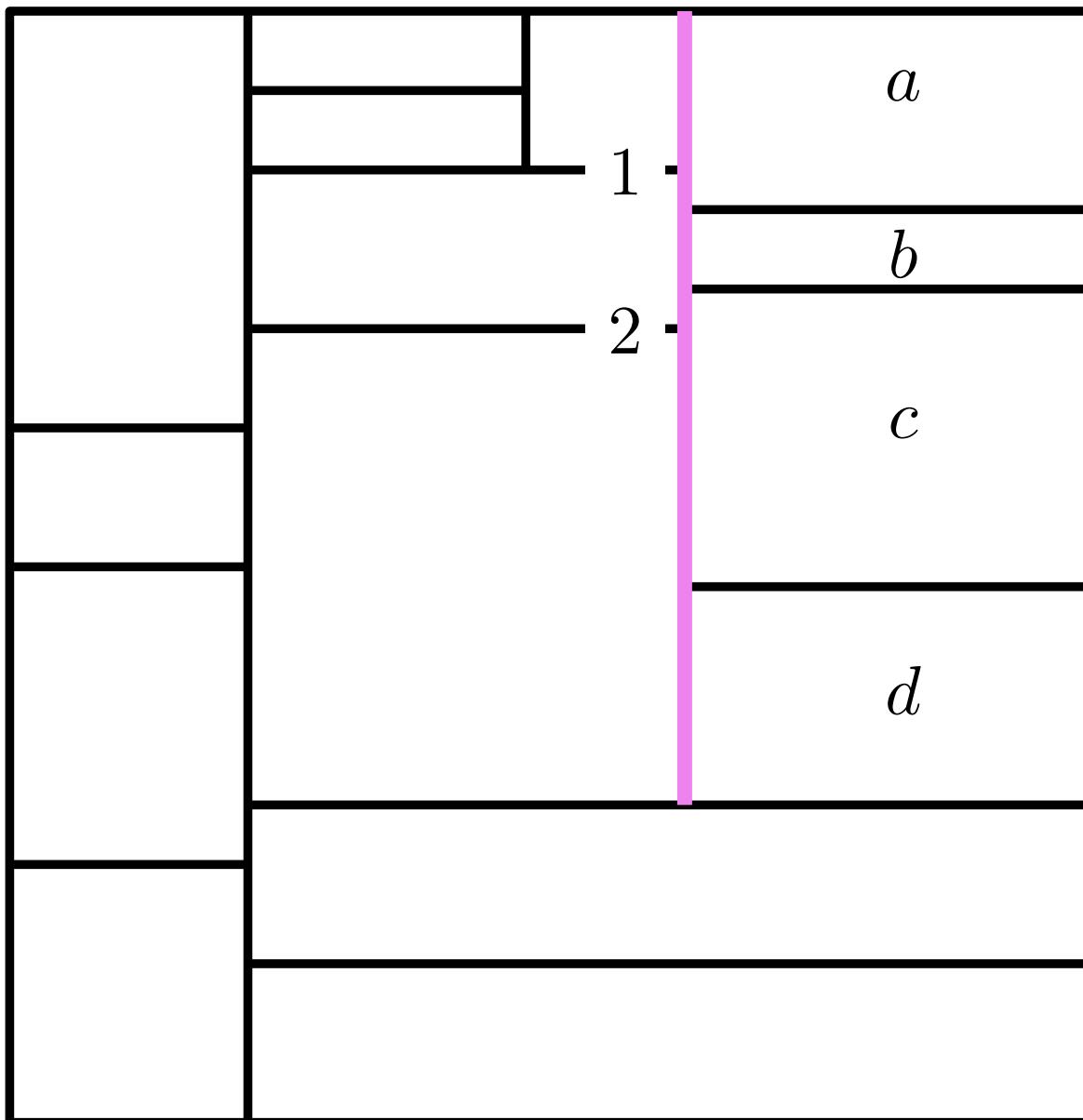
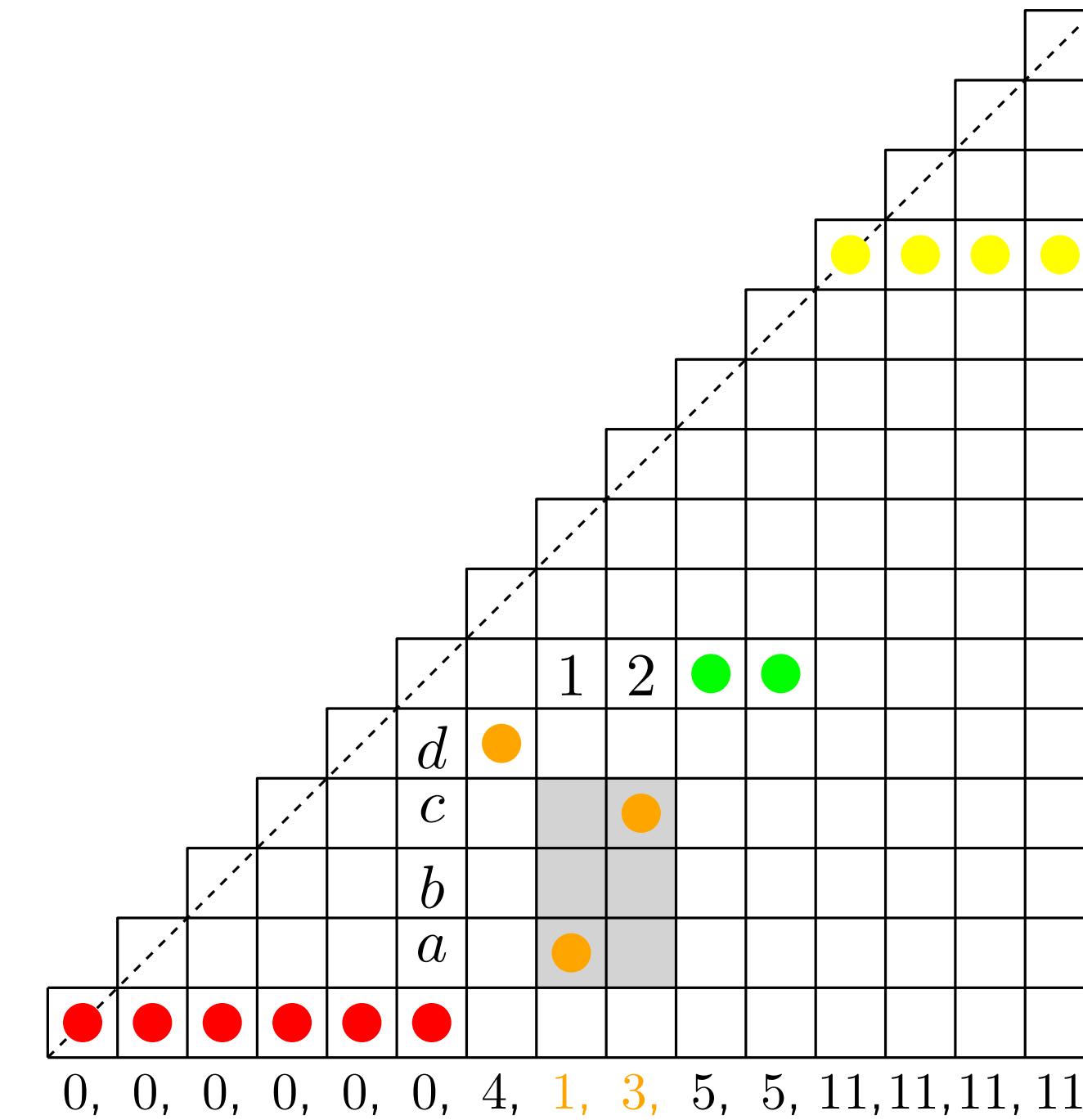
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



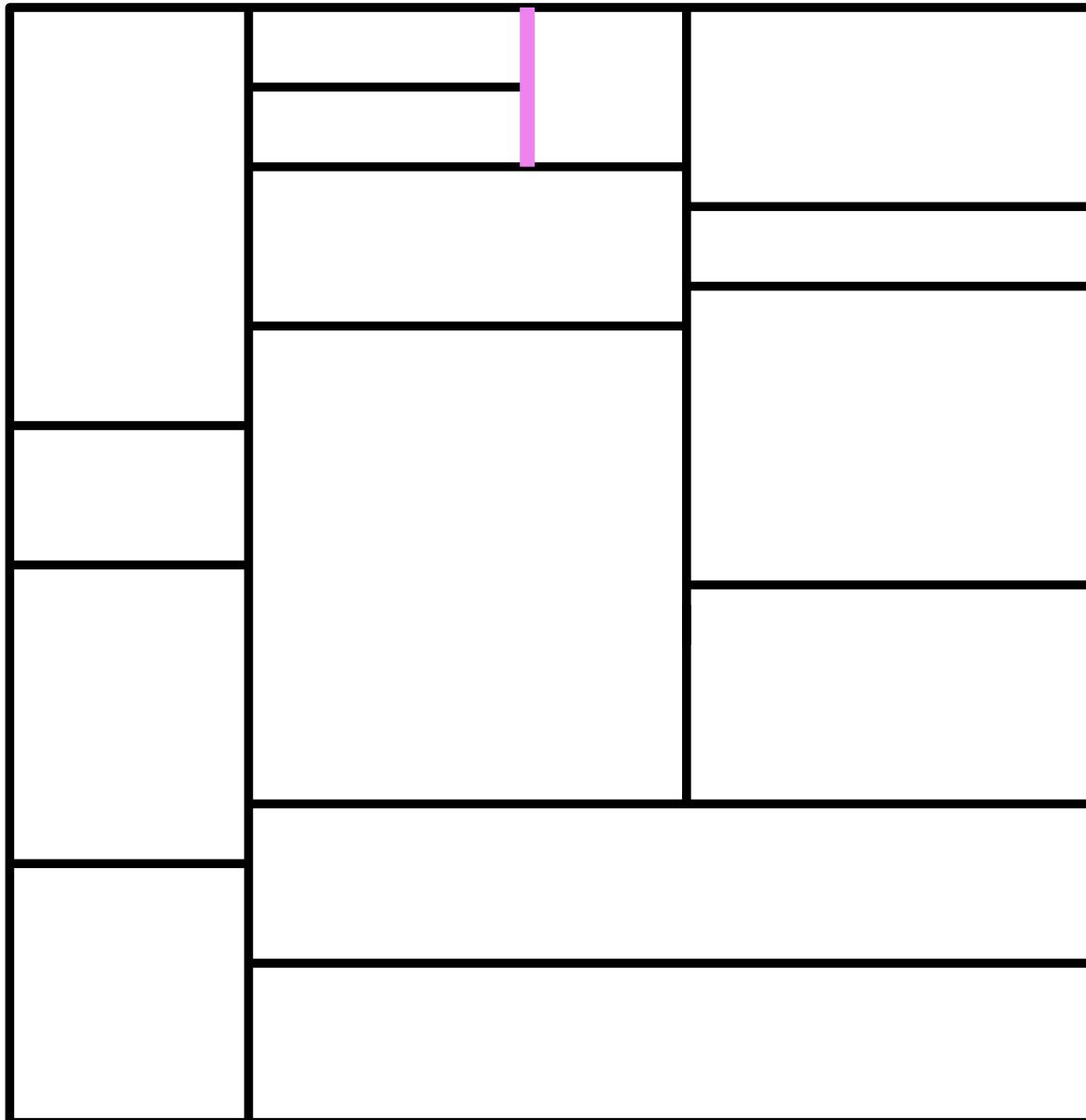
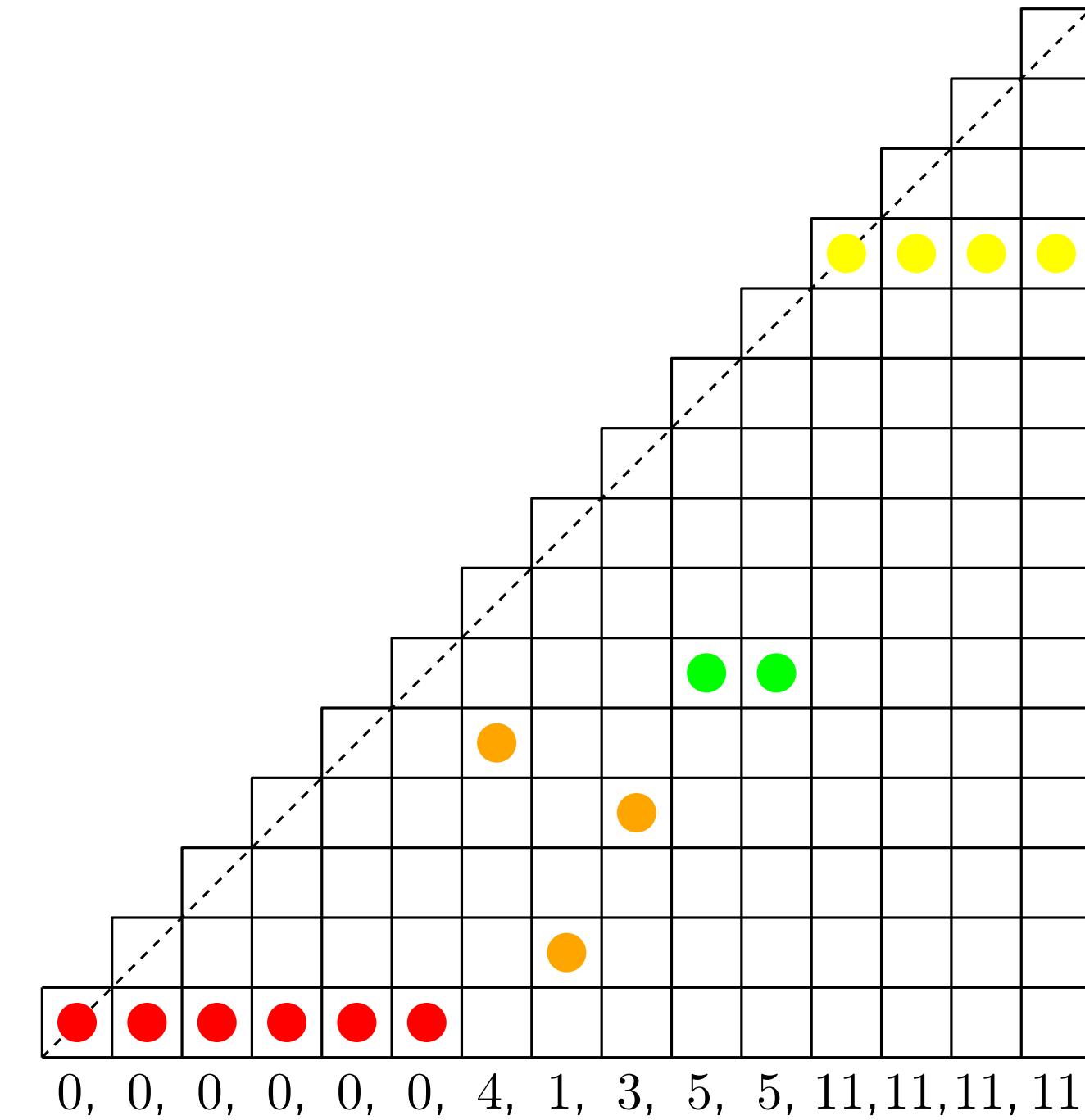
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



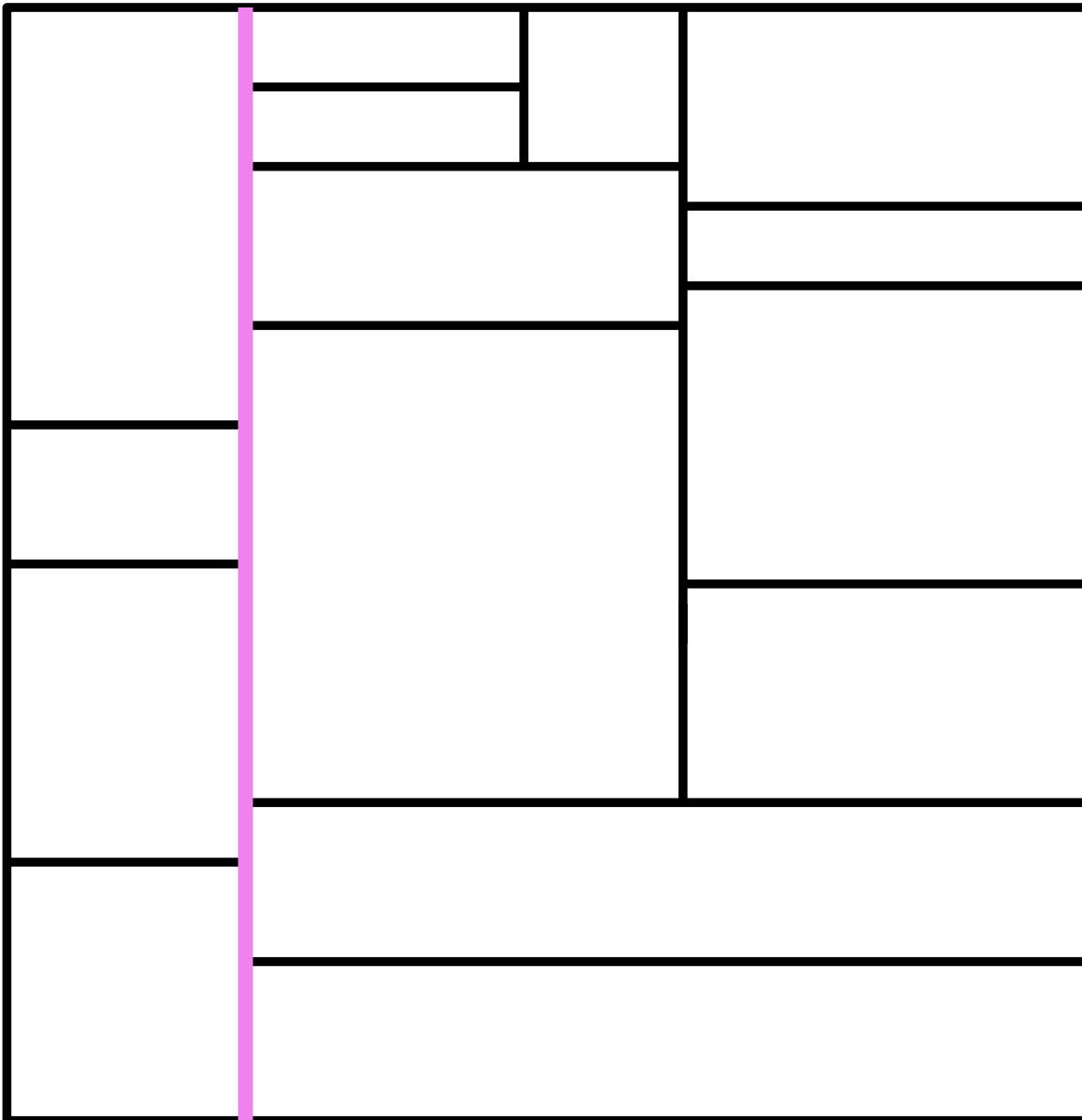
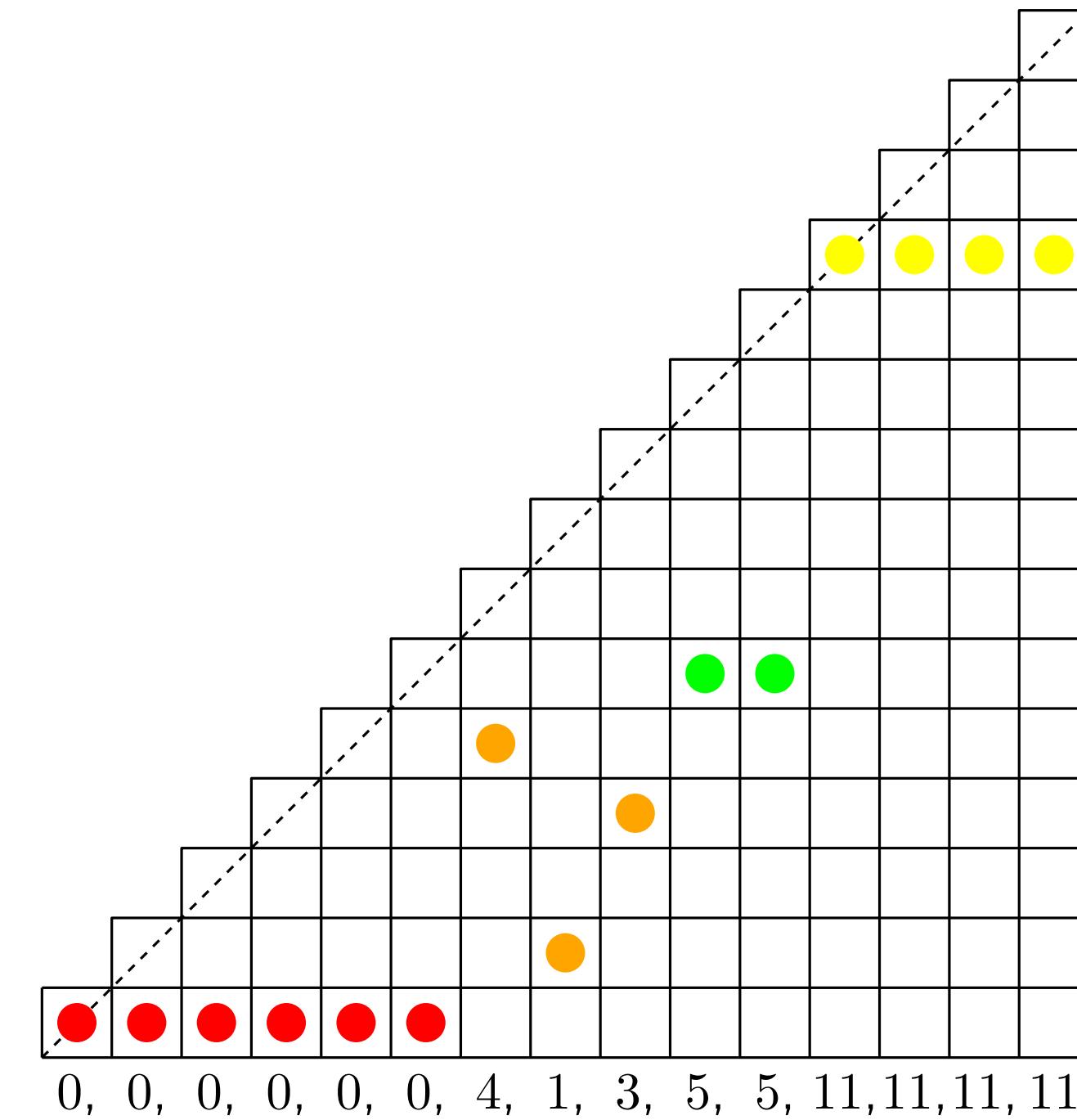
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



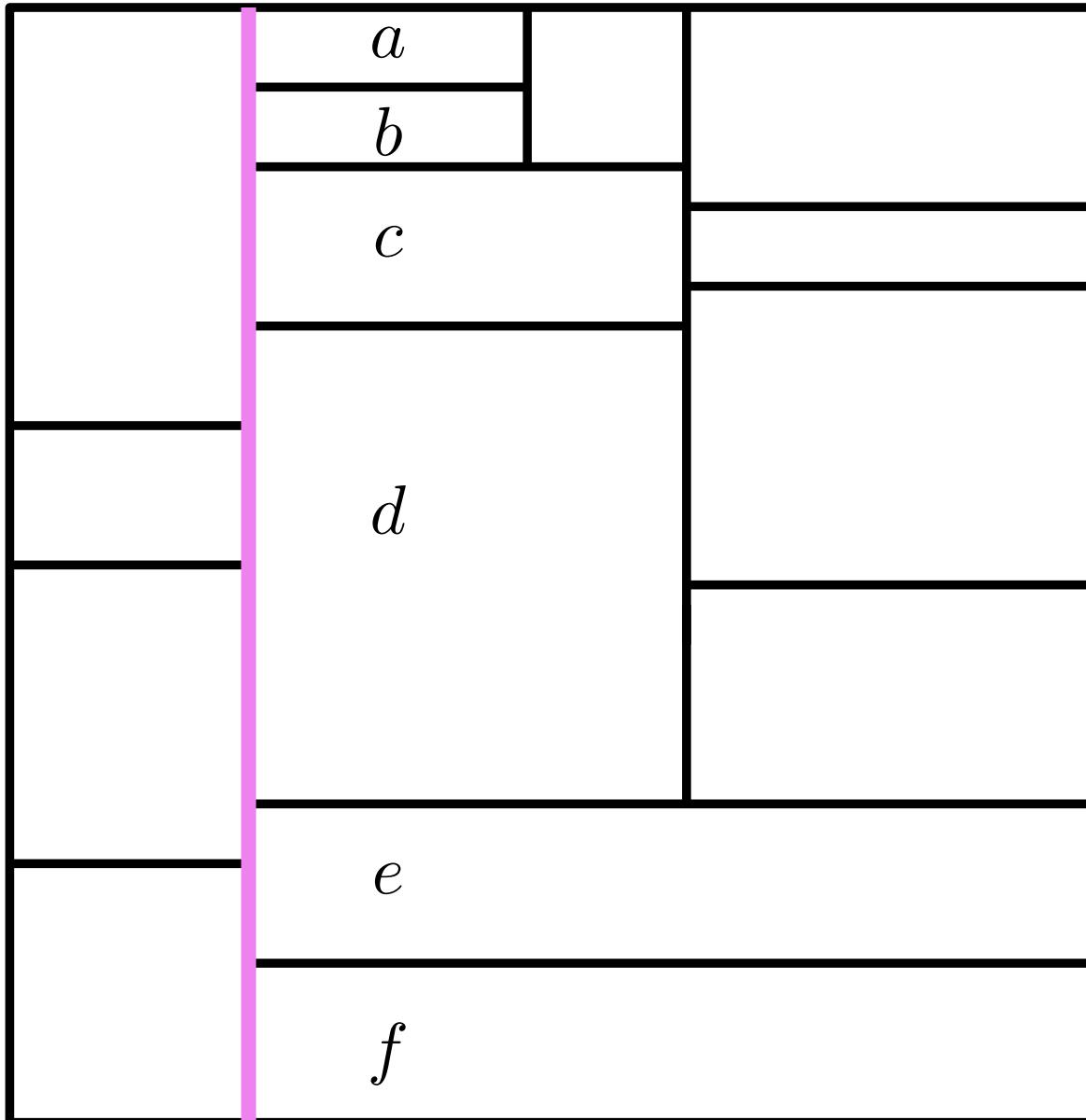
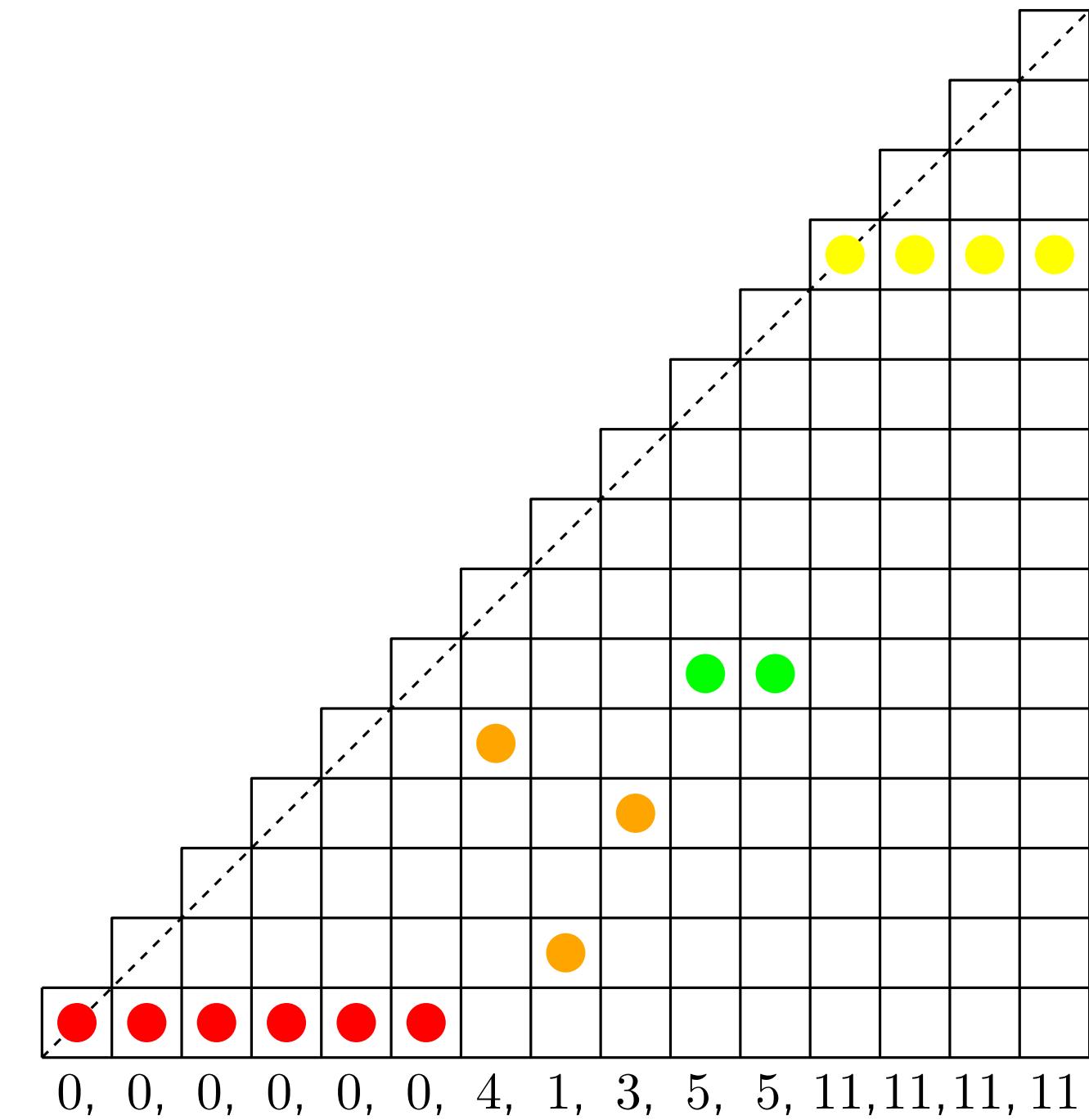
Theorem 2 (Asinowski and P): $|R_n^s(\top)| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



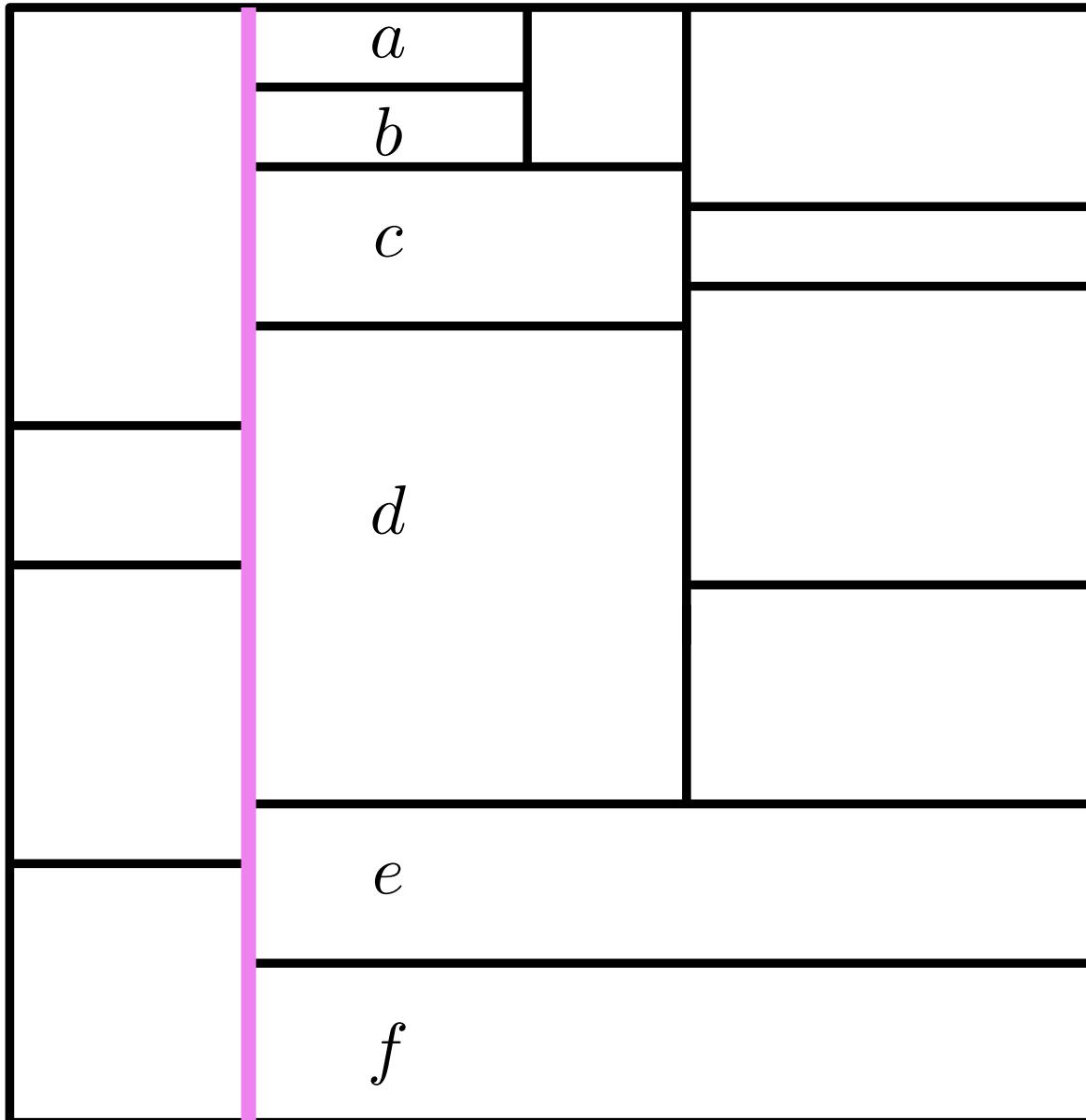
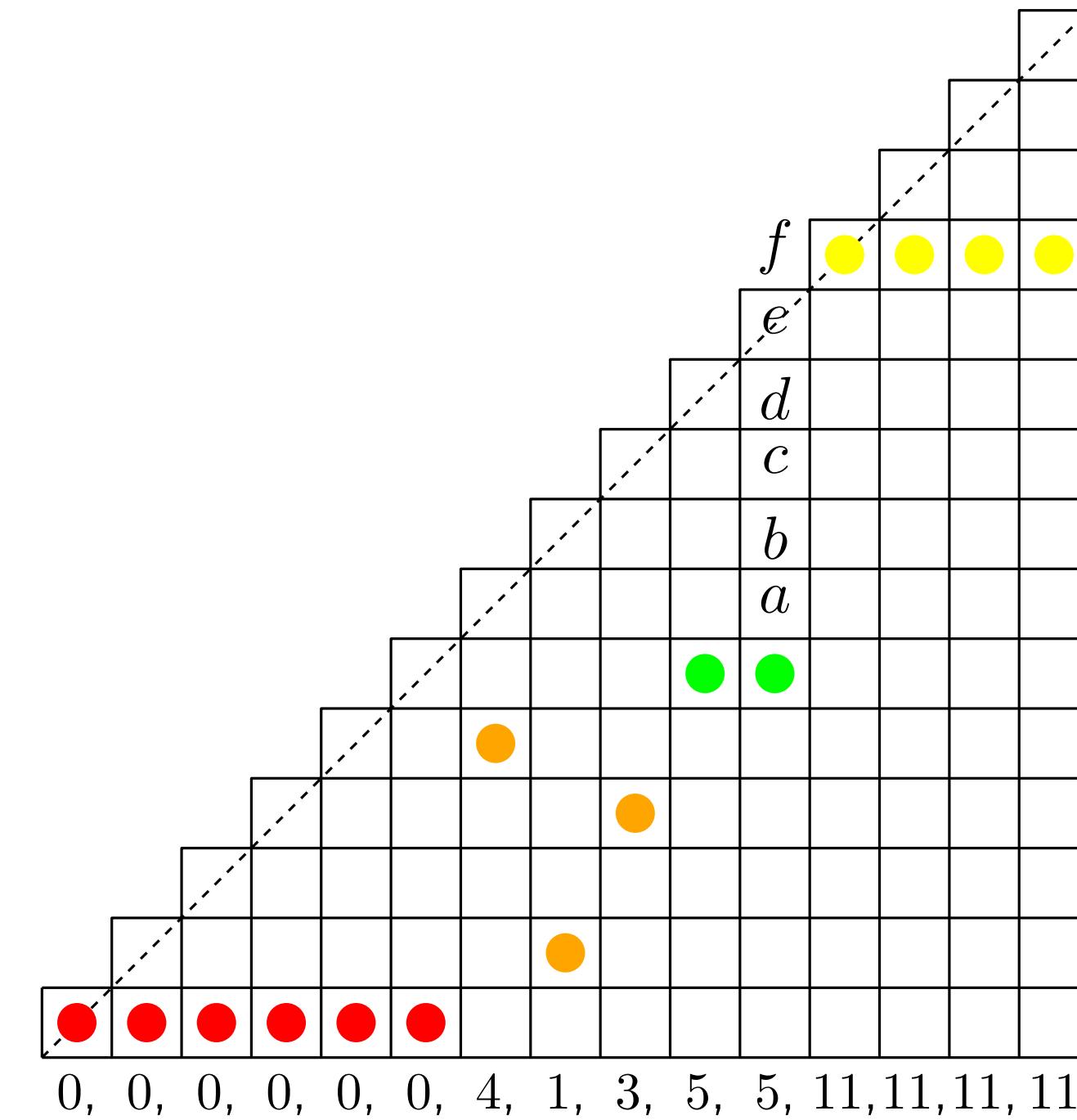
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



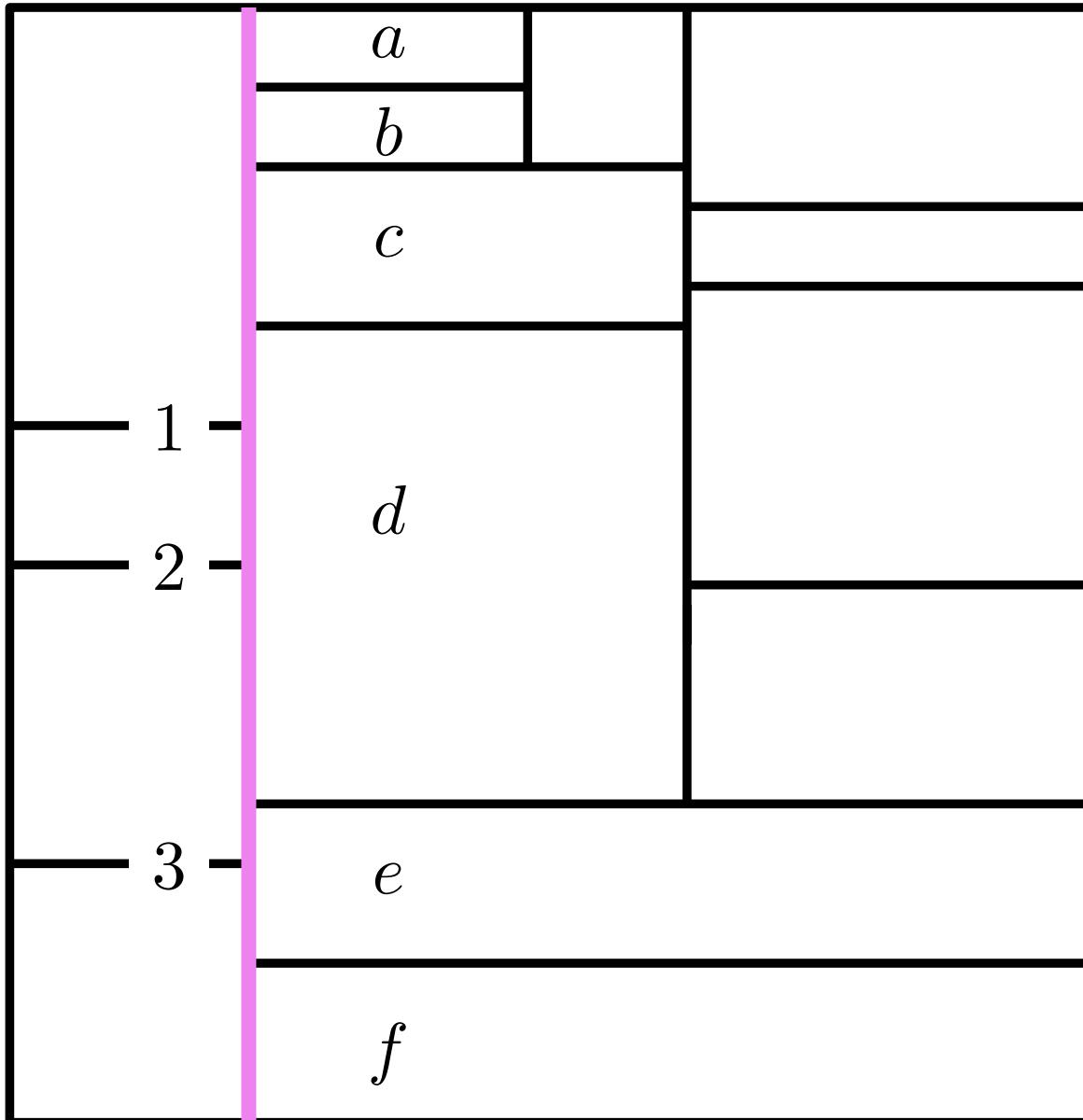
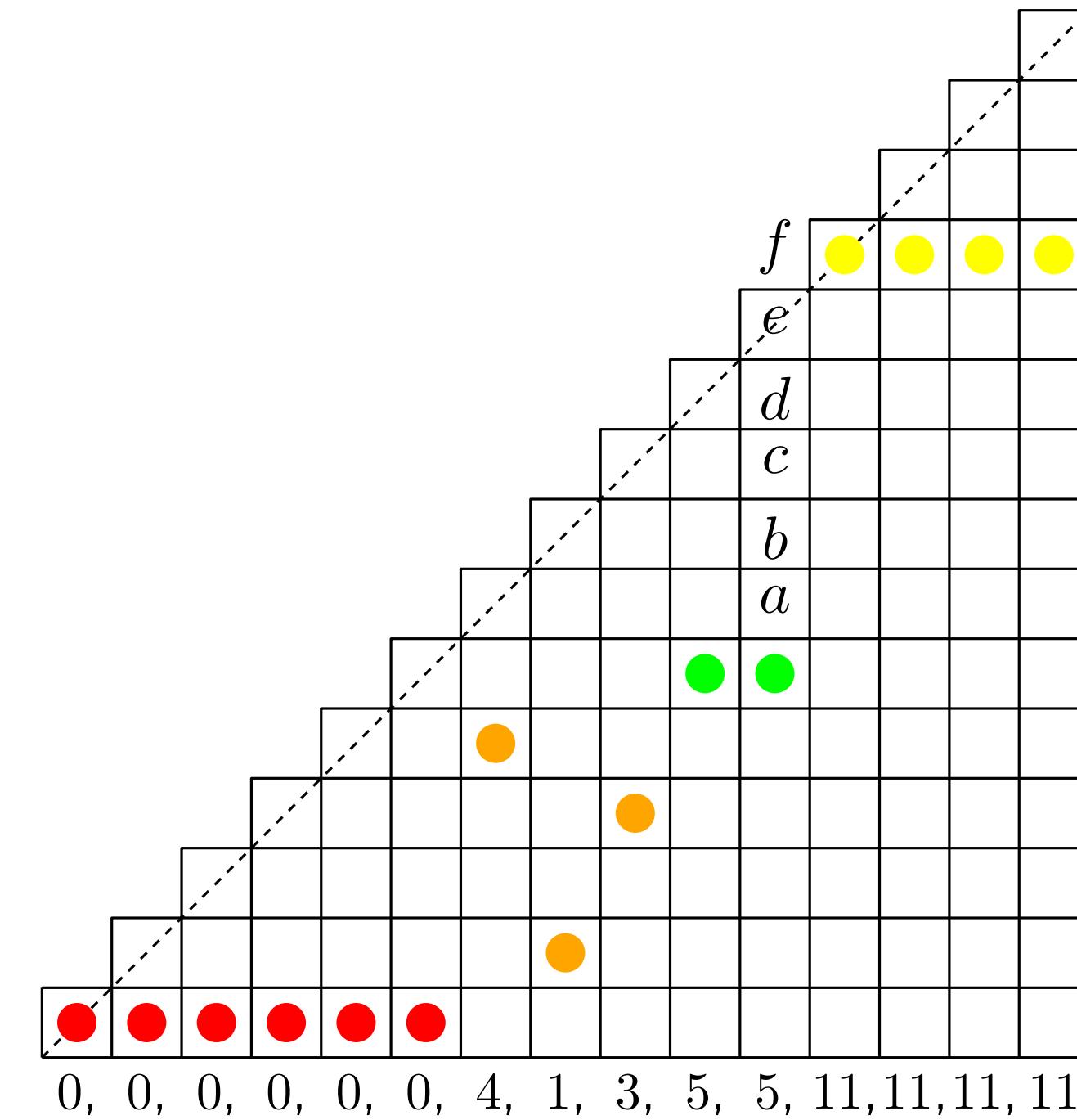
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



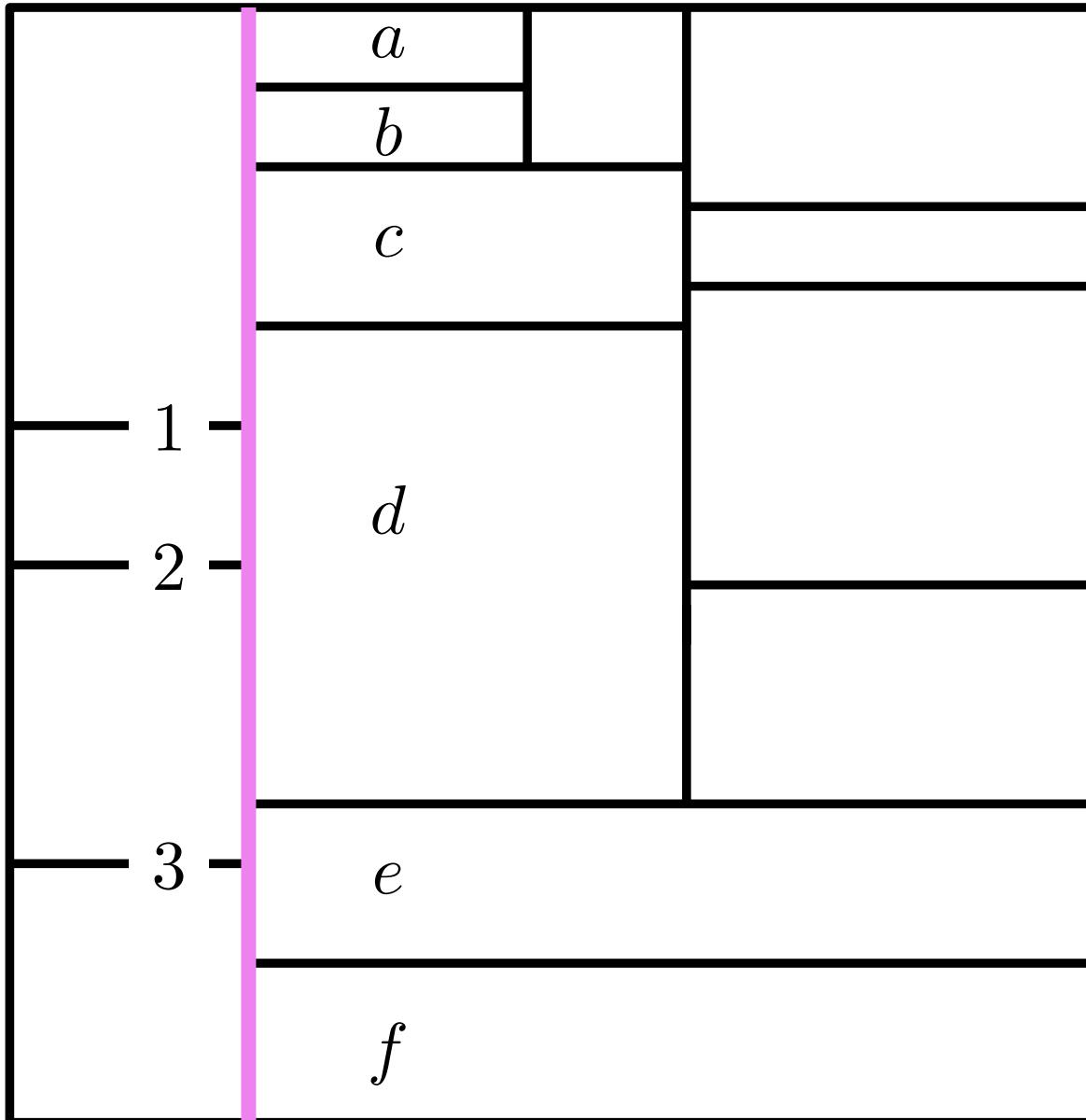
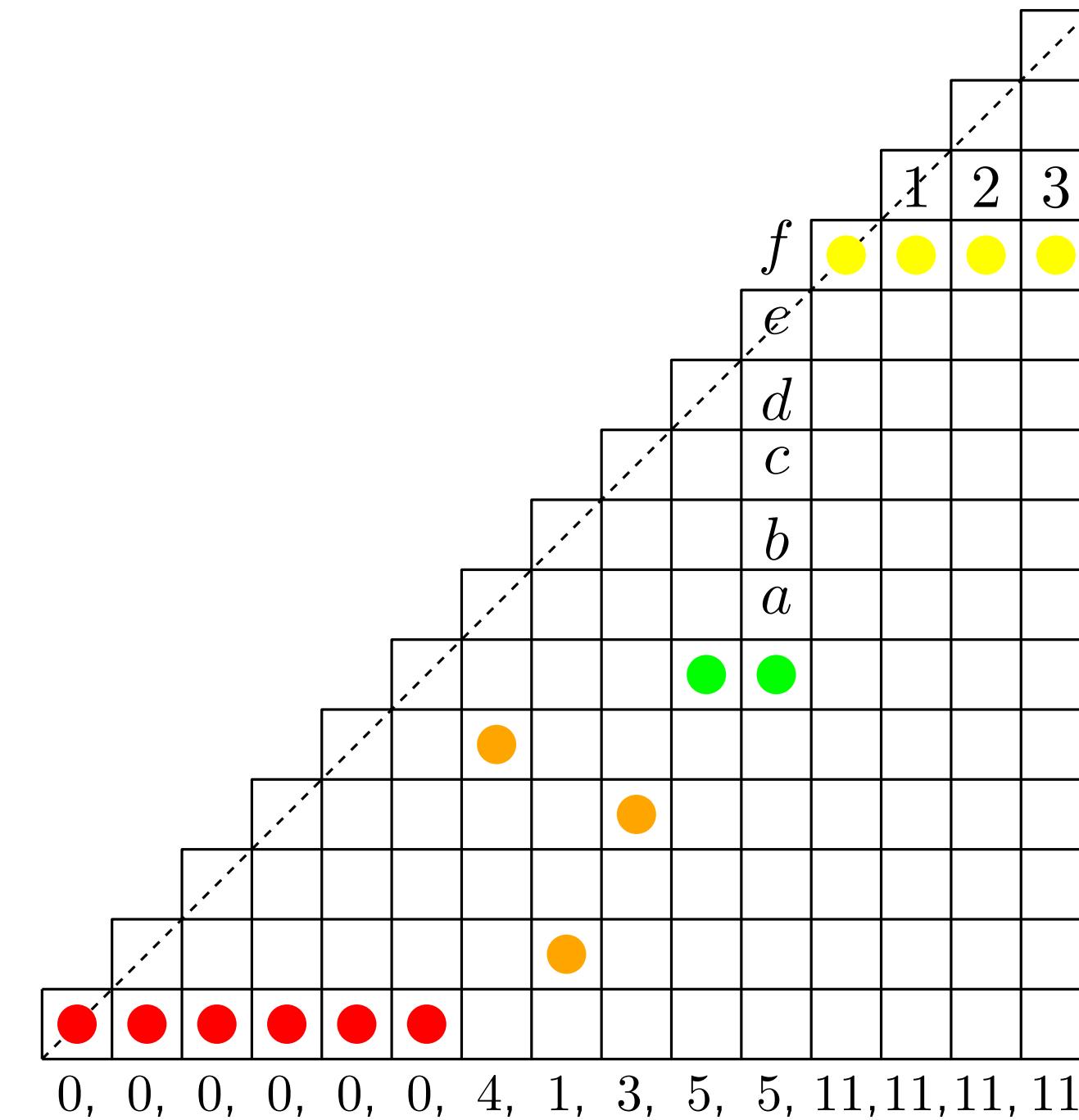
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



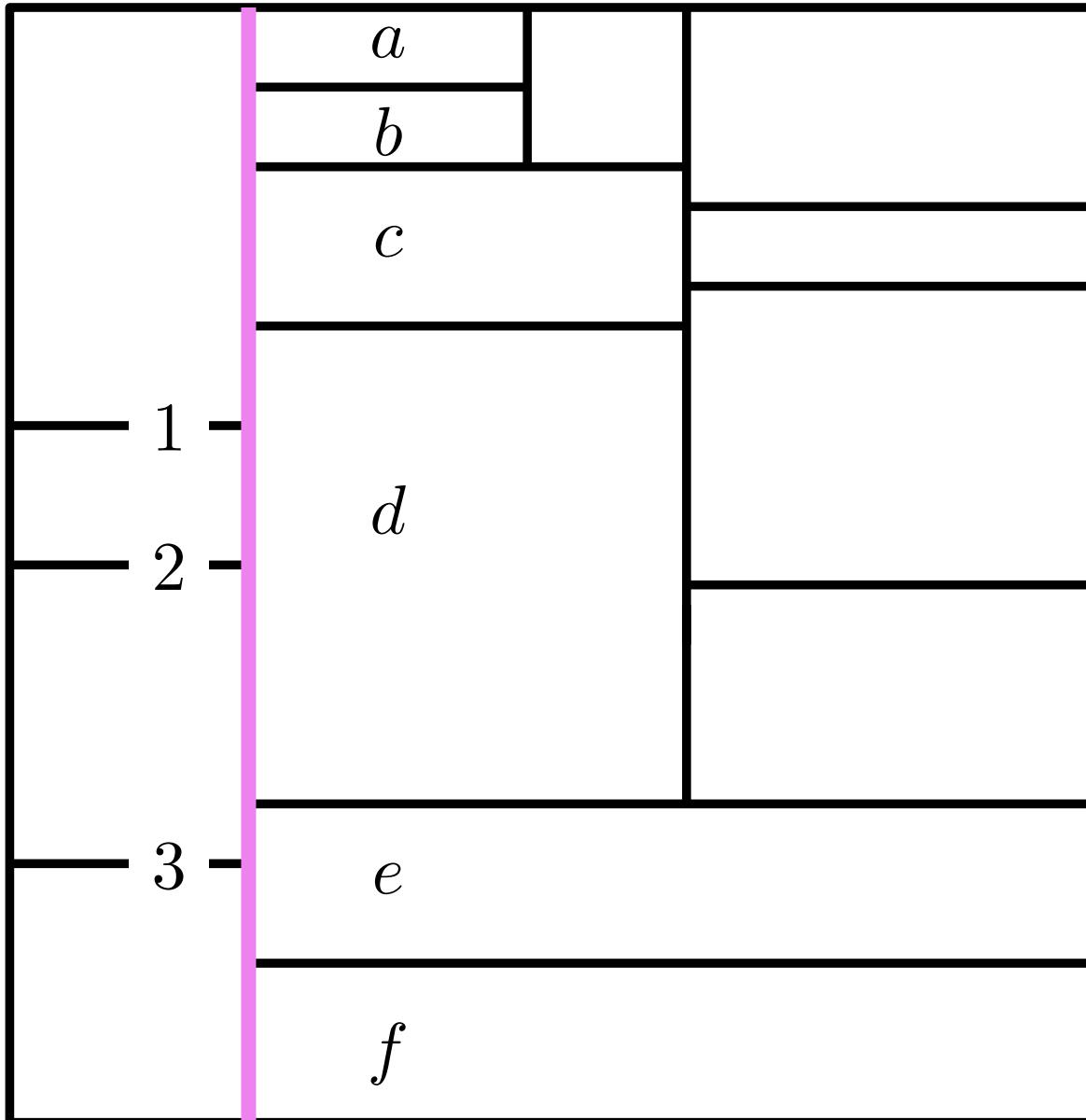
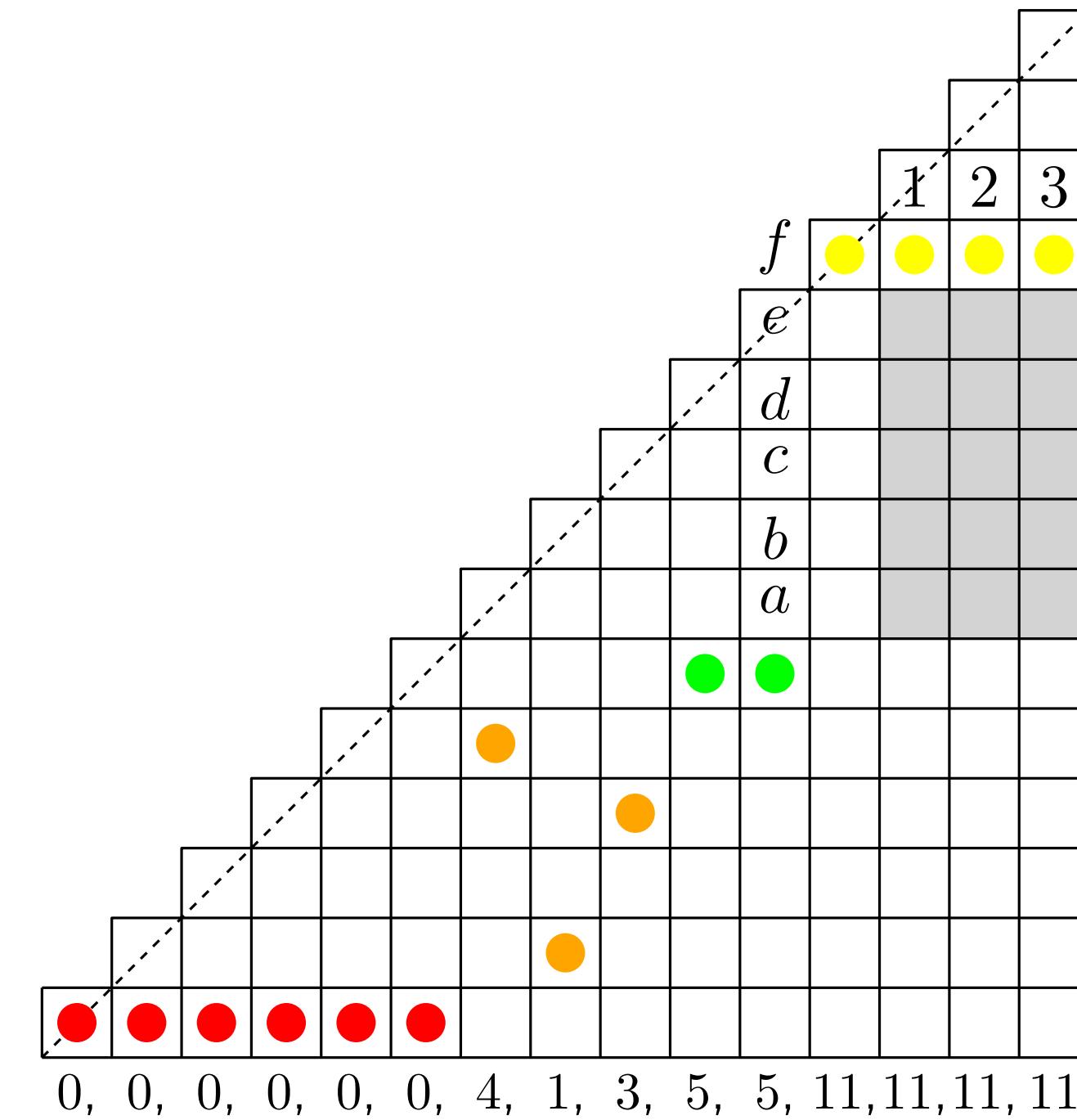
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



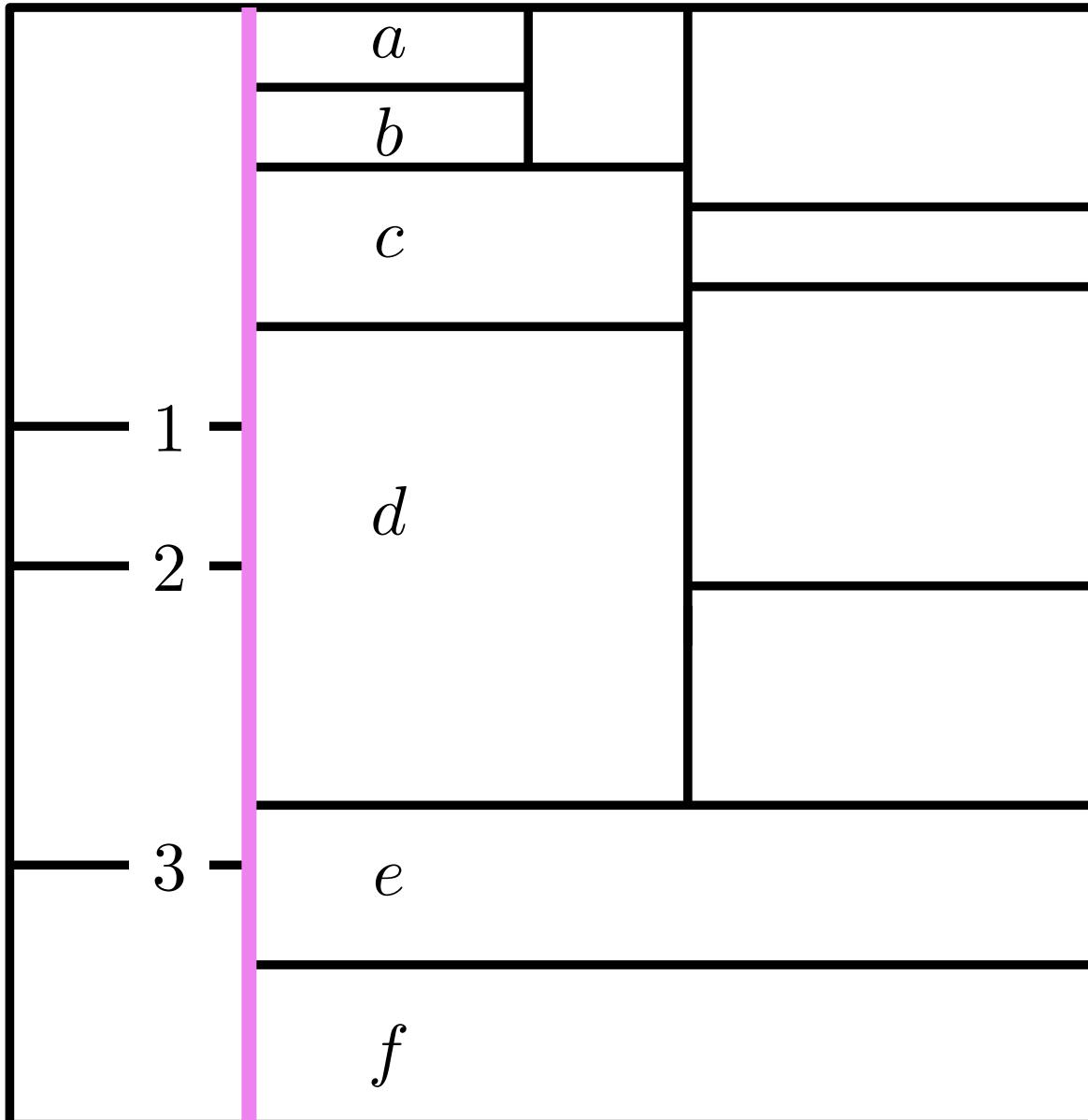
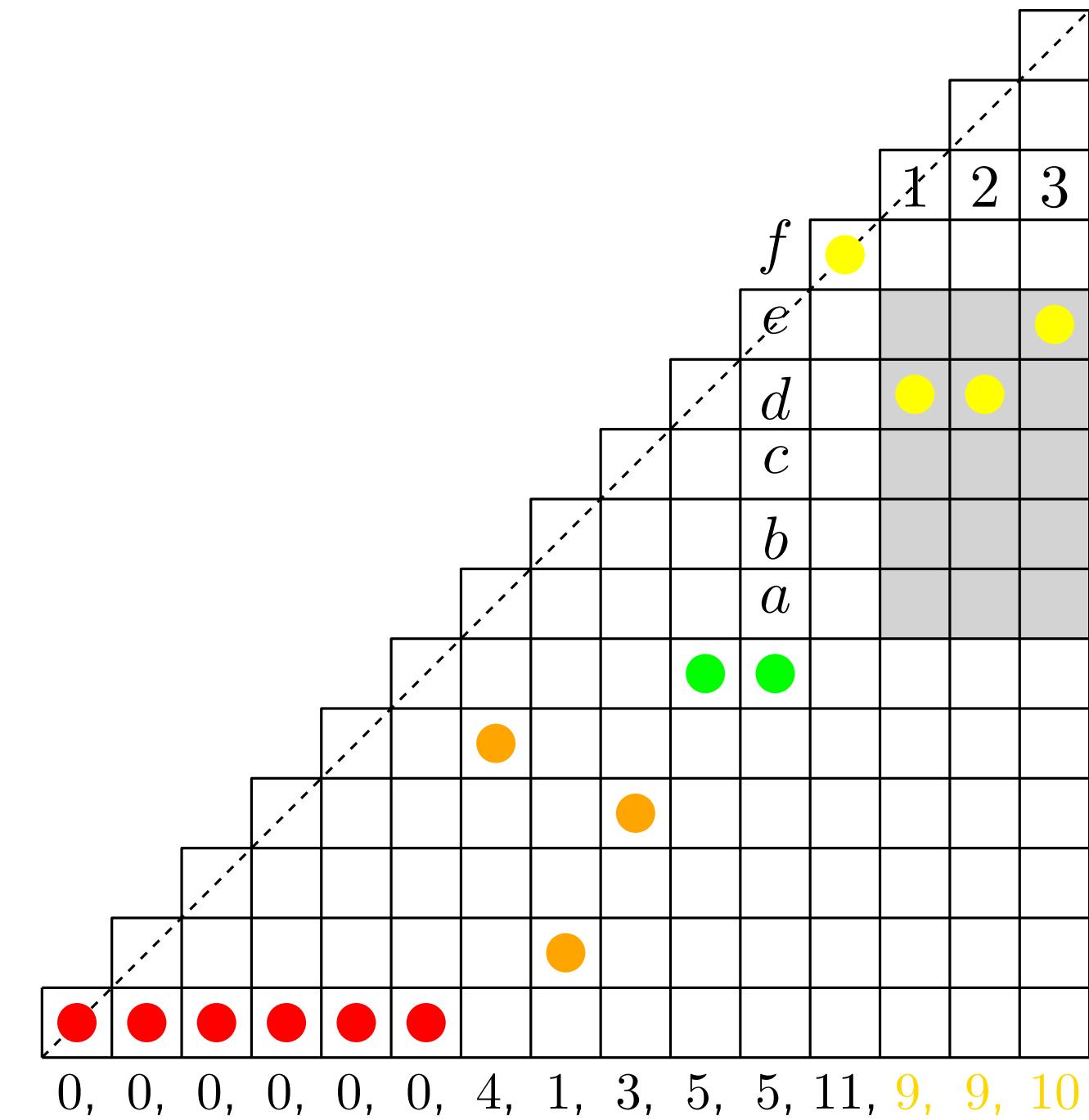
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



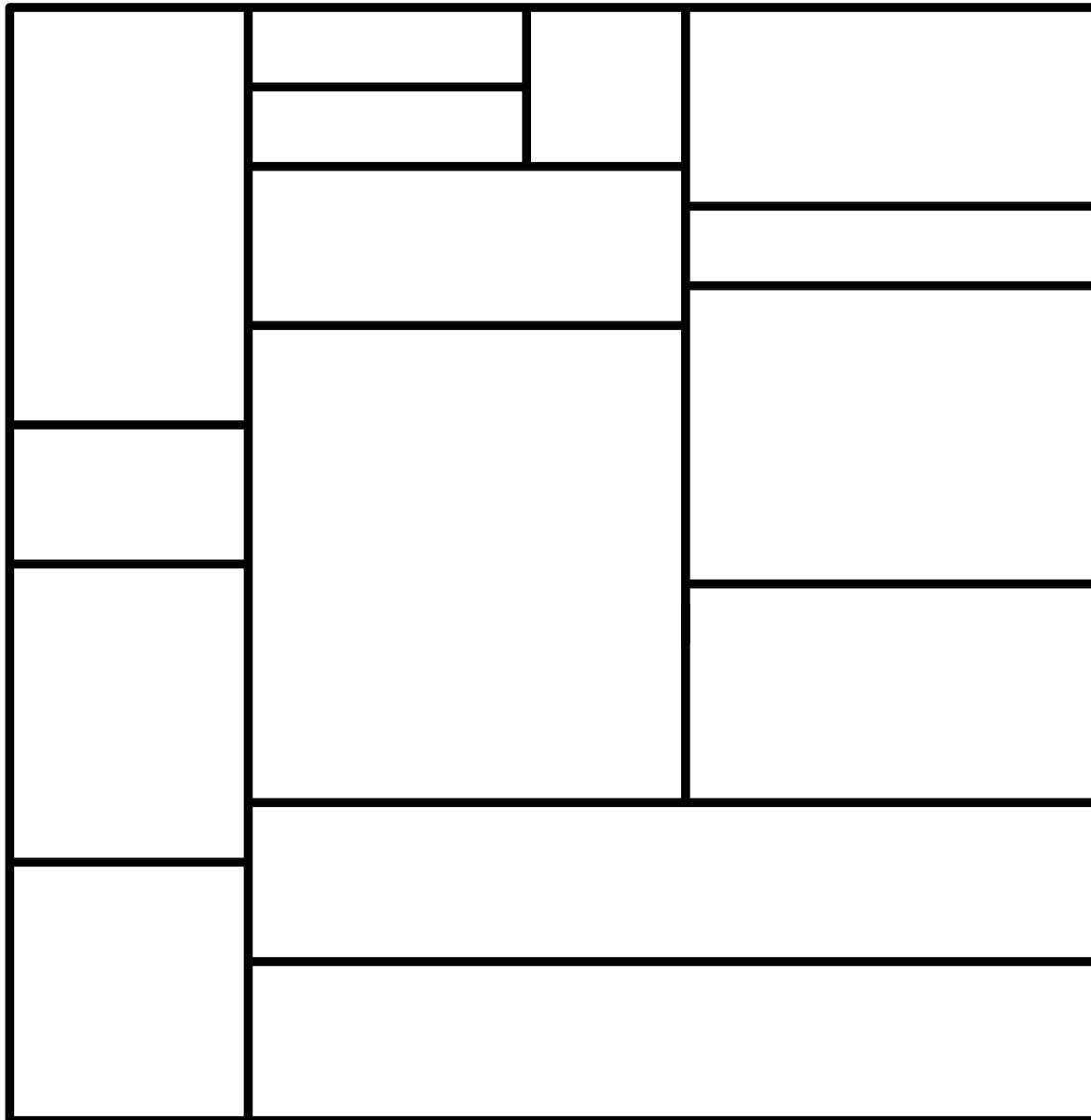
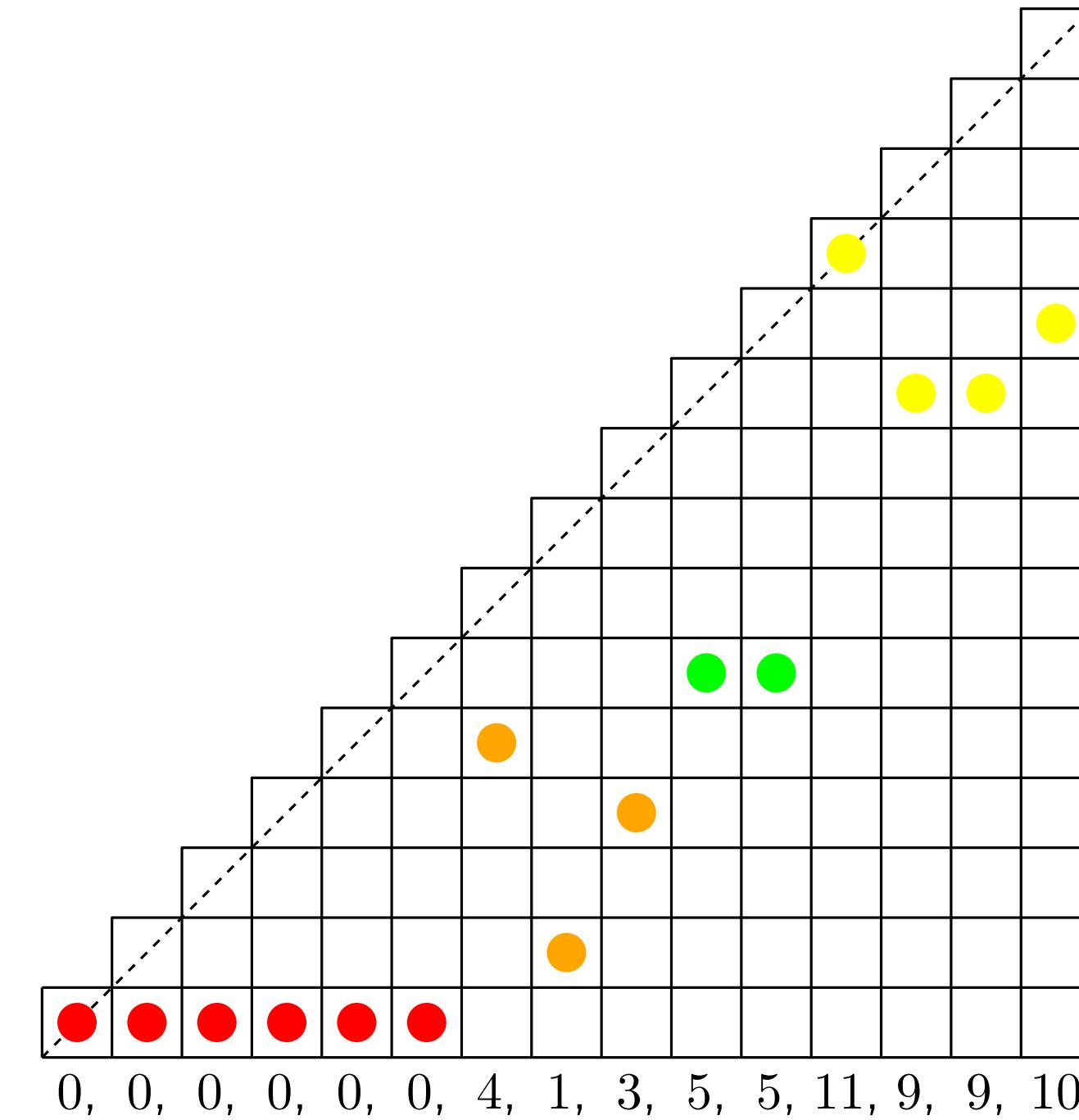
Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

Proof: Bijection to inversion sequences



Theorem 2 (Asinowski and P): $|R_n^s(\mathsf{T})| = |I_n(110, 010, 210, 120)|$, OEIS A279555

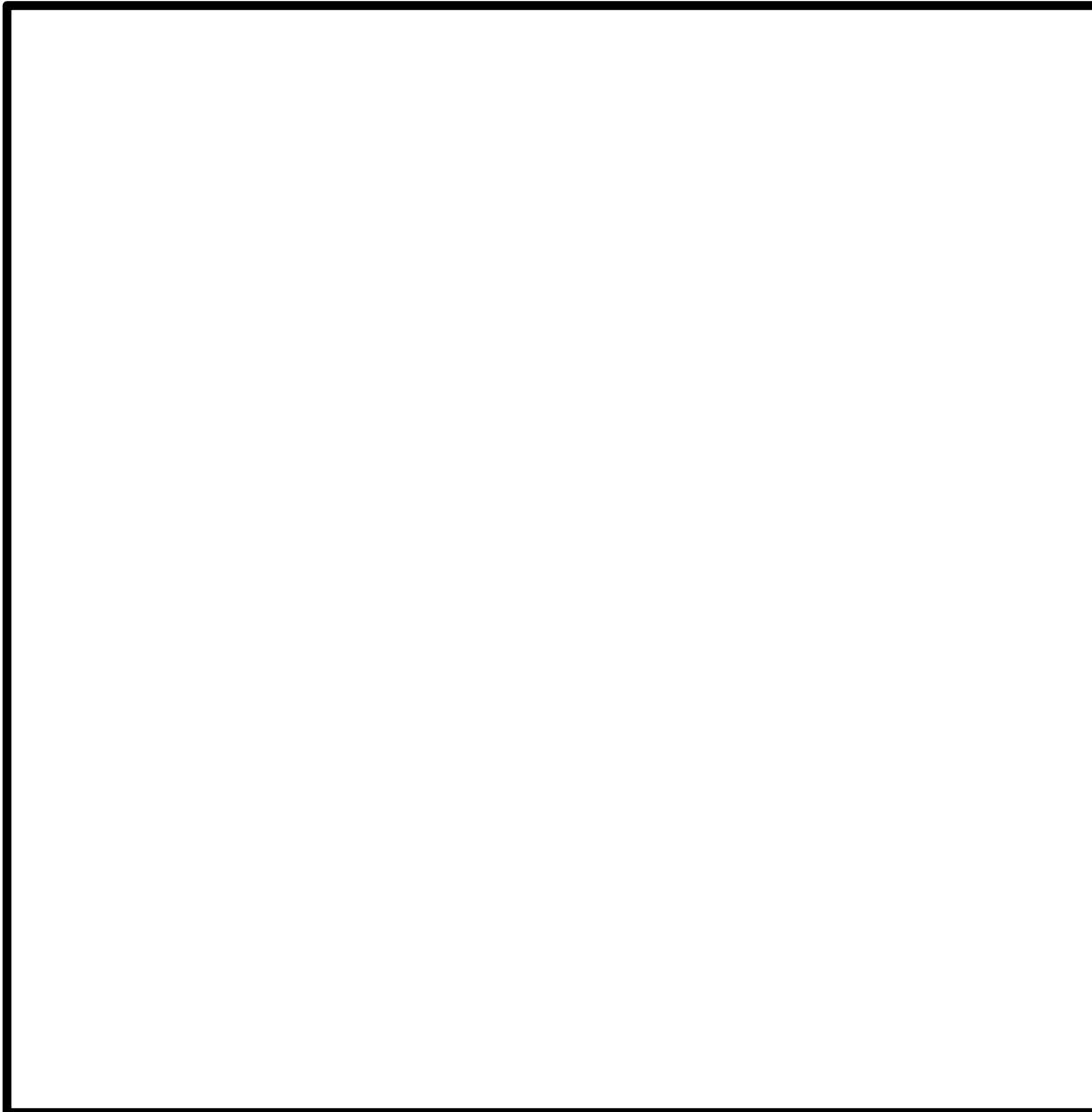
Proof: Bijection to inversion sequences



First geometric interpretation of sequence, sequence previously appeared in paper examining pattern avoidance in inversion sequences from Megan Martinez and Carla Savage (2018).

Proposition 3a: $|R_n^w(\vdash, \dashv)| = 2^{n-1}$

Proof: Enumerated by compositions of n .

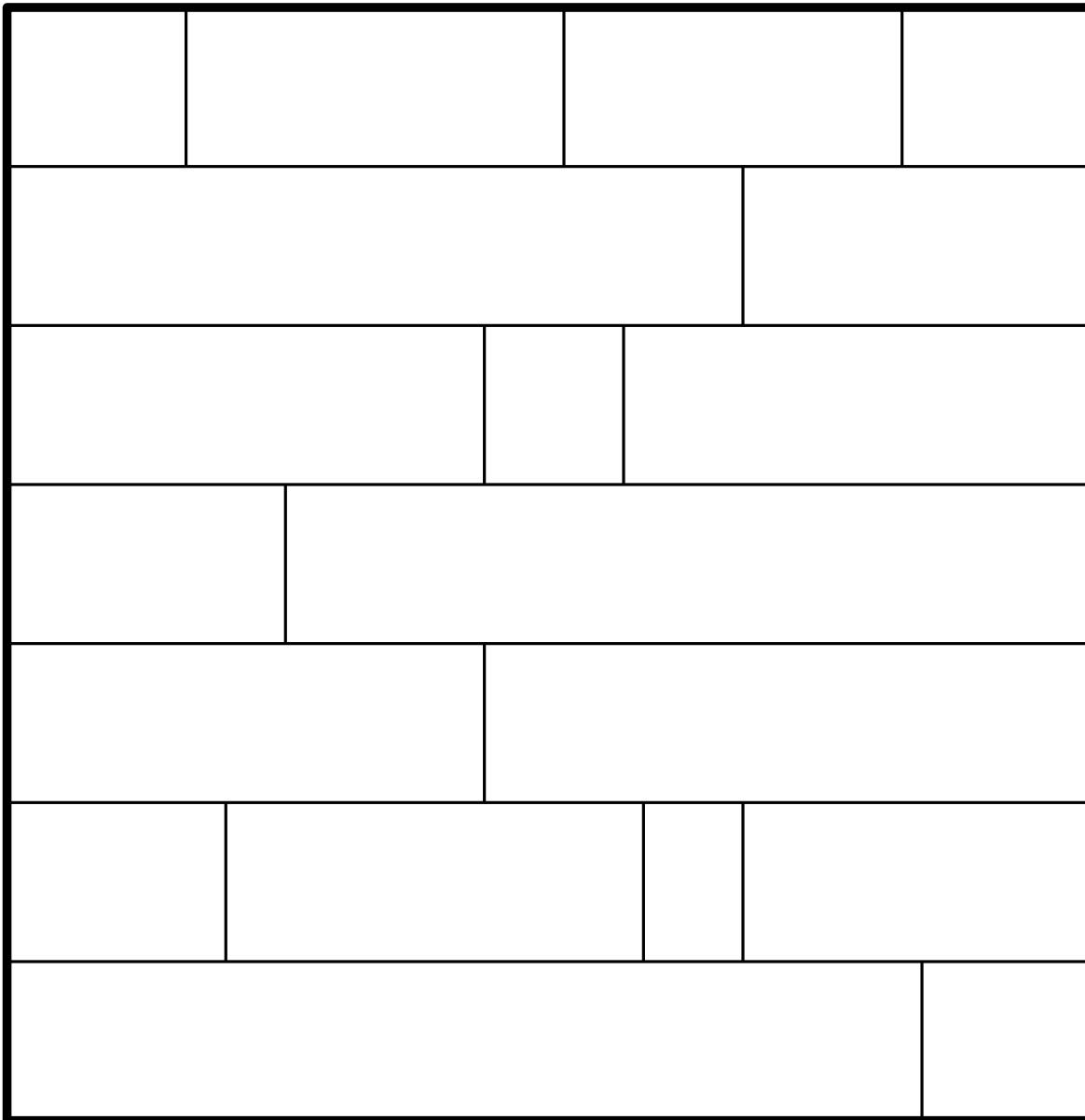


Proposition 3a: $|R_n^w(\vdash, \dashv)| = 2^{n-1}$

Proof: Enumerated by compositions of n .

Proposition 3a: $|R_n^w(\vdash, \dashv)| = 2^{n-1}$

Proof: Enumerated by compositions of n .



Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

Proof: Bijection to rushed Dyck paths

A *rushed Dyck path* is one which attains its maximum height on the initial ascent.

Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

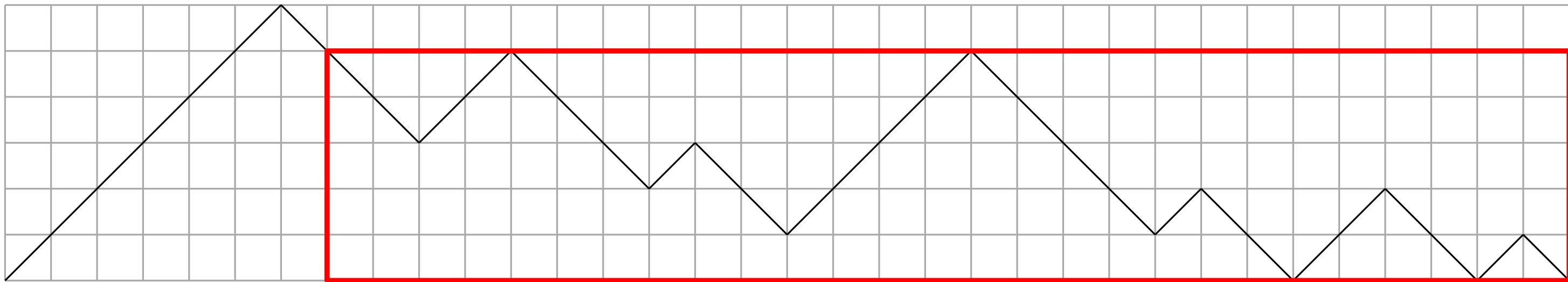
Proof: Bijection to rushed Dyck paths

A *rushed Dyck path* is one which attains its maximum height on the initial ascent.

Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

Proof: Bijection to rushed Dyck paths

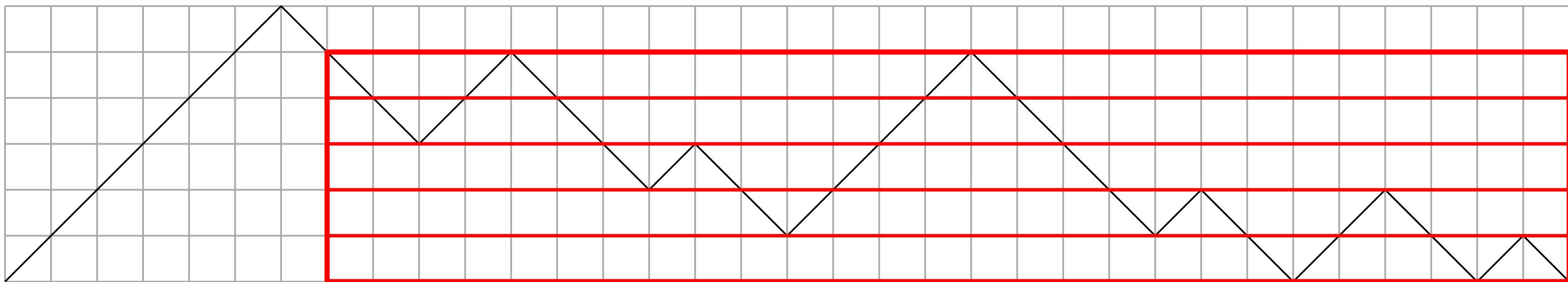
A *rushed Dyck path* is one which attains its maximum height on the initial ascent.



Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

Proof: Bijection to rushed Dyck paths

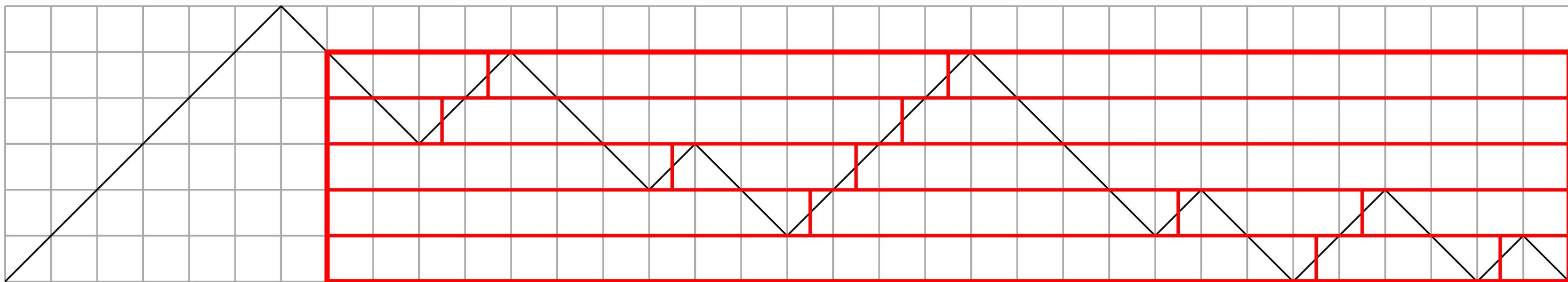
A *rushed Dyck path* is one which attains its maximum height on the initial ascent.



Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

Proof: Bijection to rushed Dyck paths

A *rushed Dyck path* is one which attains its maximum height on the initial ascent.



Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

Proof: Bijection to rushed Dyck paths

A *rushed Dyck path* is one which attains its maximum height on the initial ascent.

Proposition 3b (Asinowski and Jelínek): Enumerating $R_n^s(\vdash, \dashv)$, OEIS A287709

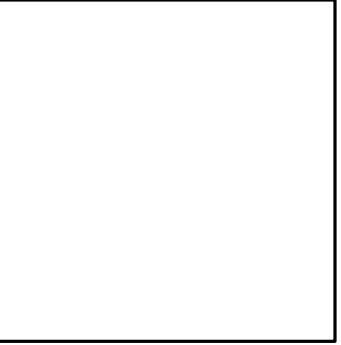
Proof: Bijection to rushed Dyck paths

A *rushed Dyck path* is one which attains its maximum height on the initial ascent.

Asymptotics recently proven in a pre-print from Axel Bacher

Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation

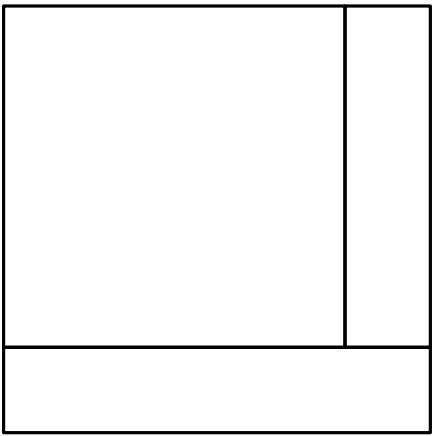


Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation

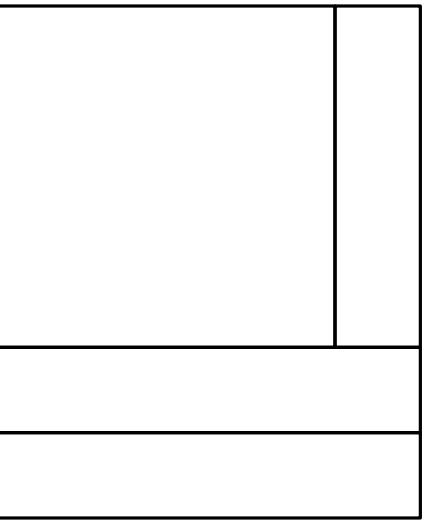
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



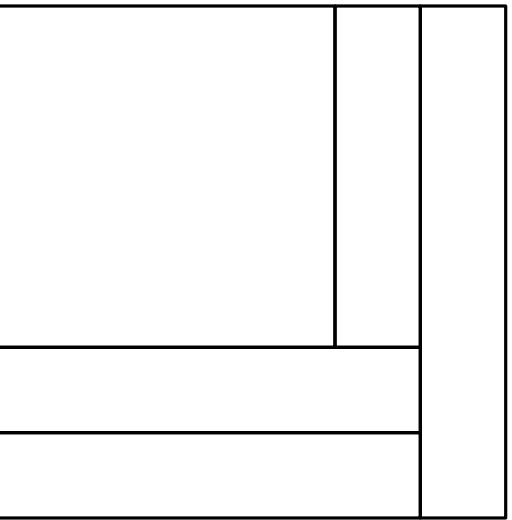
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



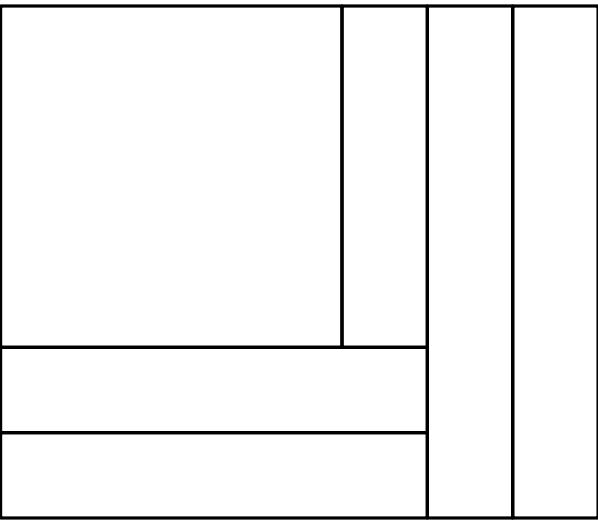
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



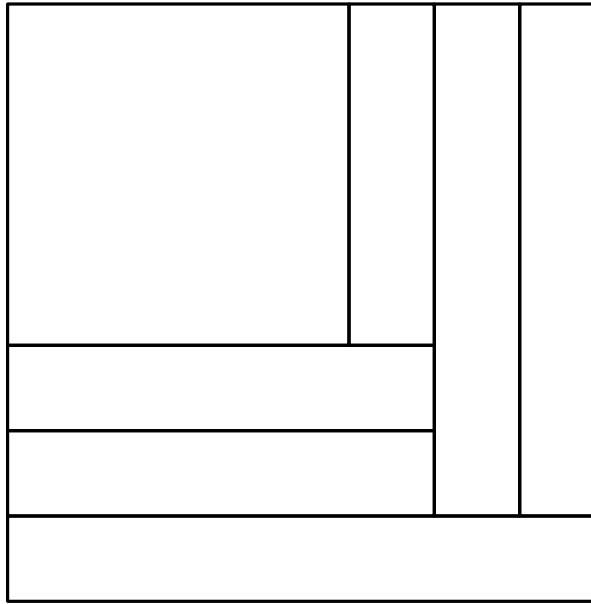
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



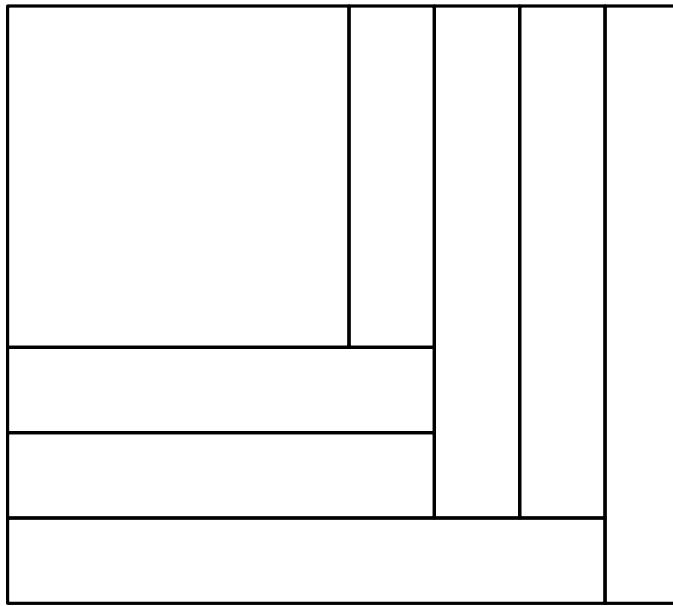
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



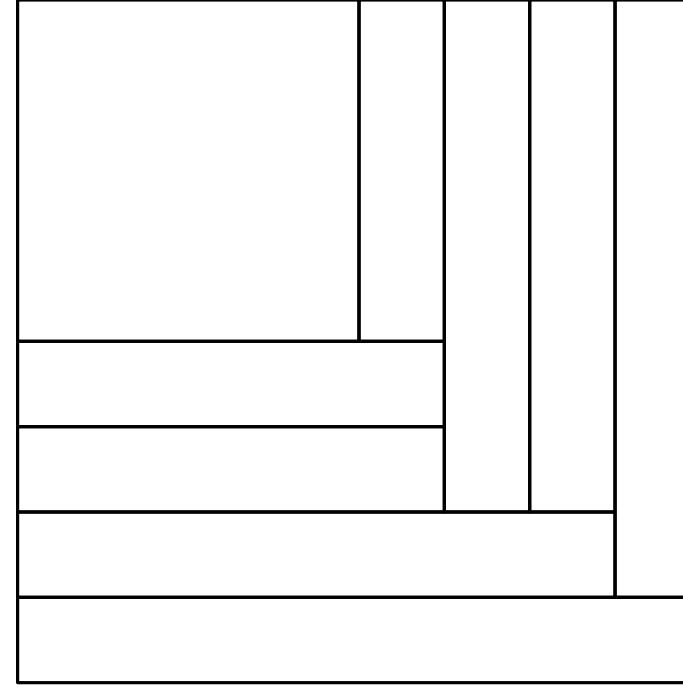
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



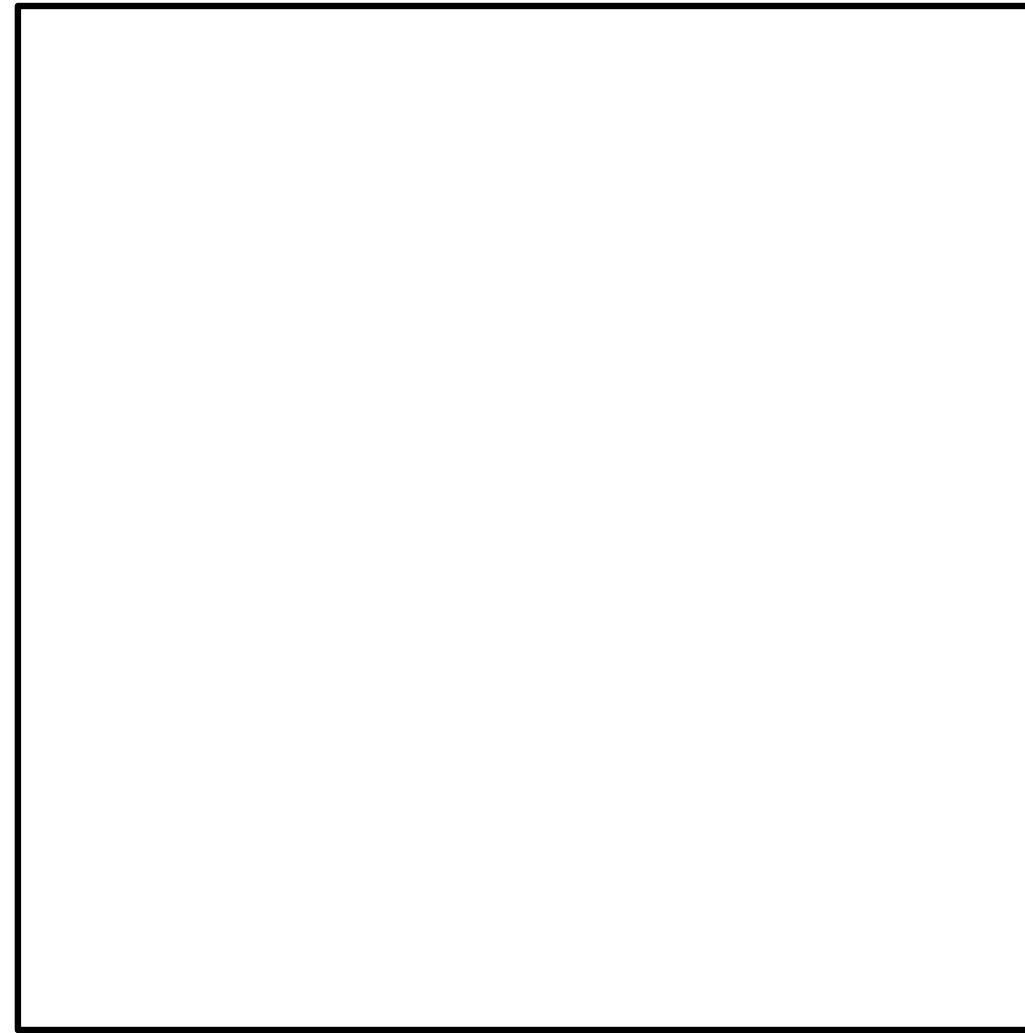
Proposition 4: $|R_n(\top, \vdash)| = 2^{n-1}$

Proof: Construction of rectangulation



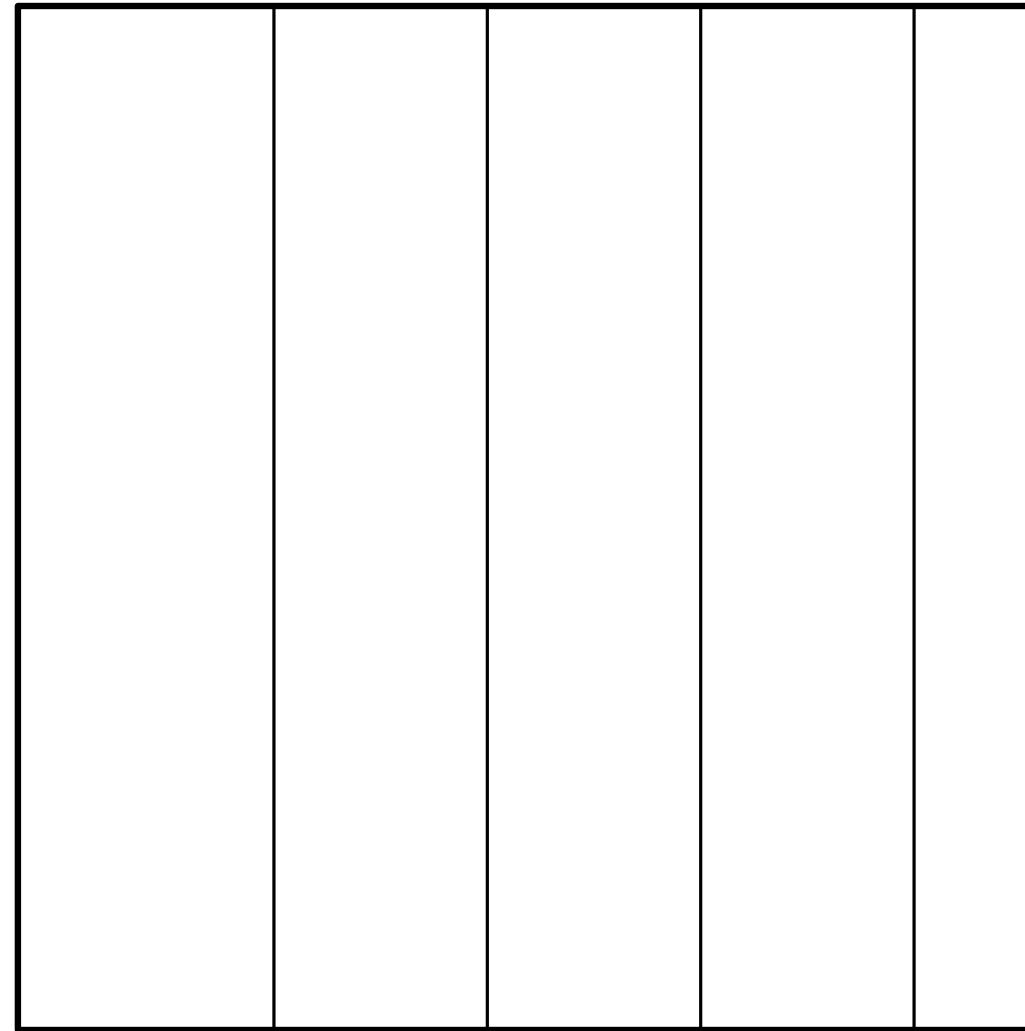
Observation 5: $|R_n(\top, \perp, \vdash)| = n$ and $|R_n(\top, \perp, \vdash, \dashv)| = 2$

Proofs: Construction of rectangulations



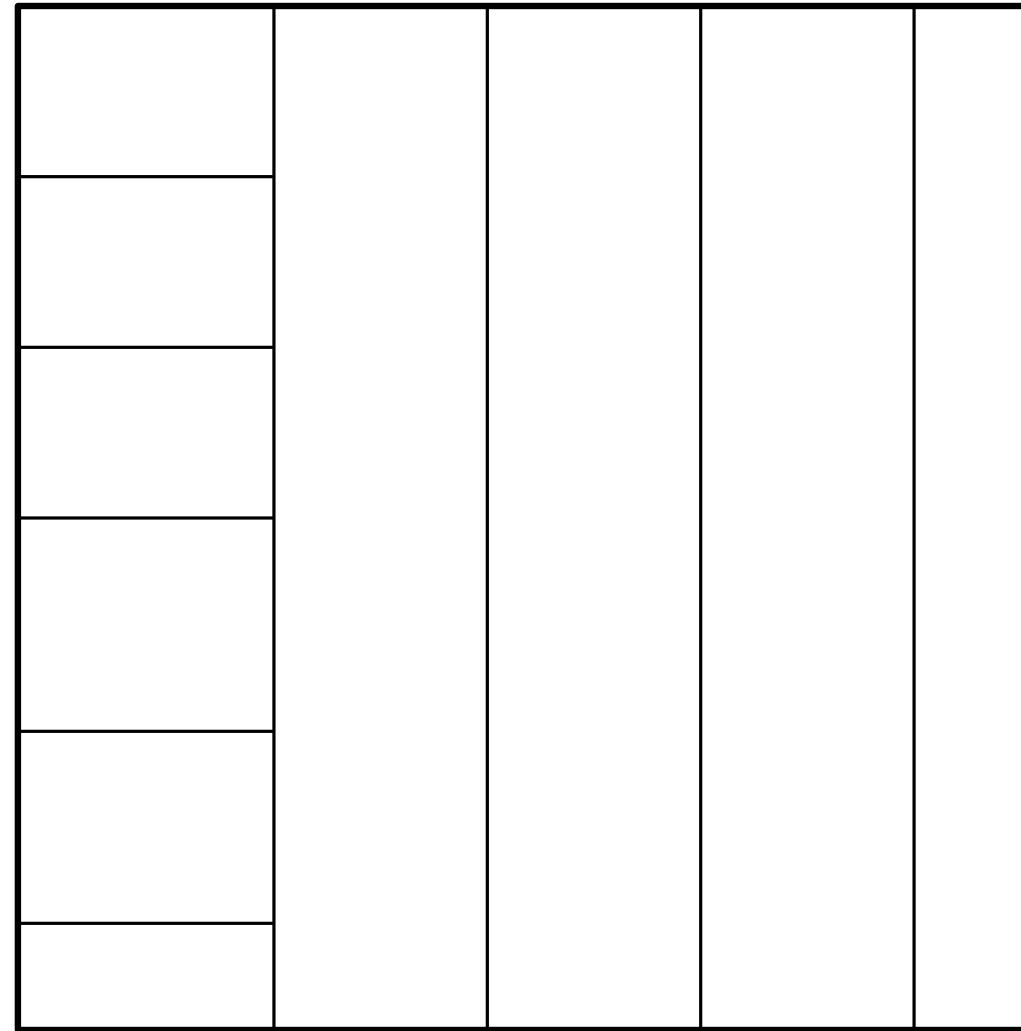
Observation 5: $|R_n(\top, \perp, \vdash)| = n$ and $|R_n(\top, \perp, \vdash, \dashv)| = 2$

Proofs: Construction of rectangulations



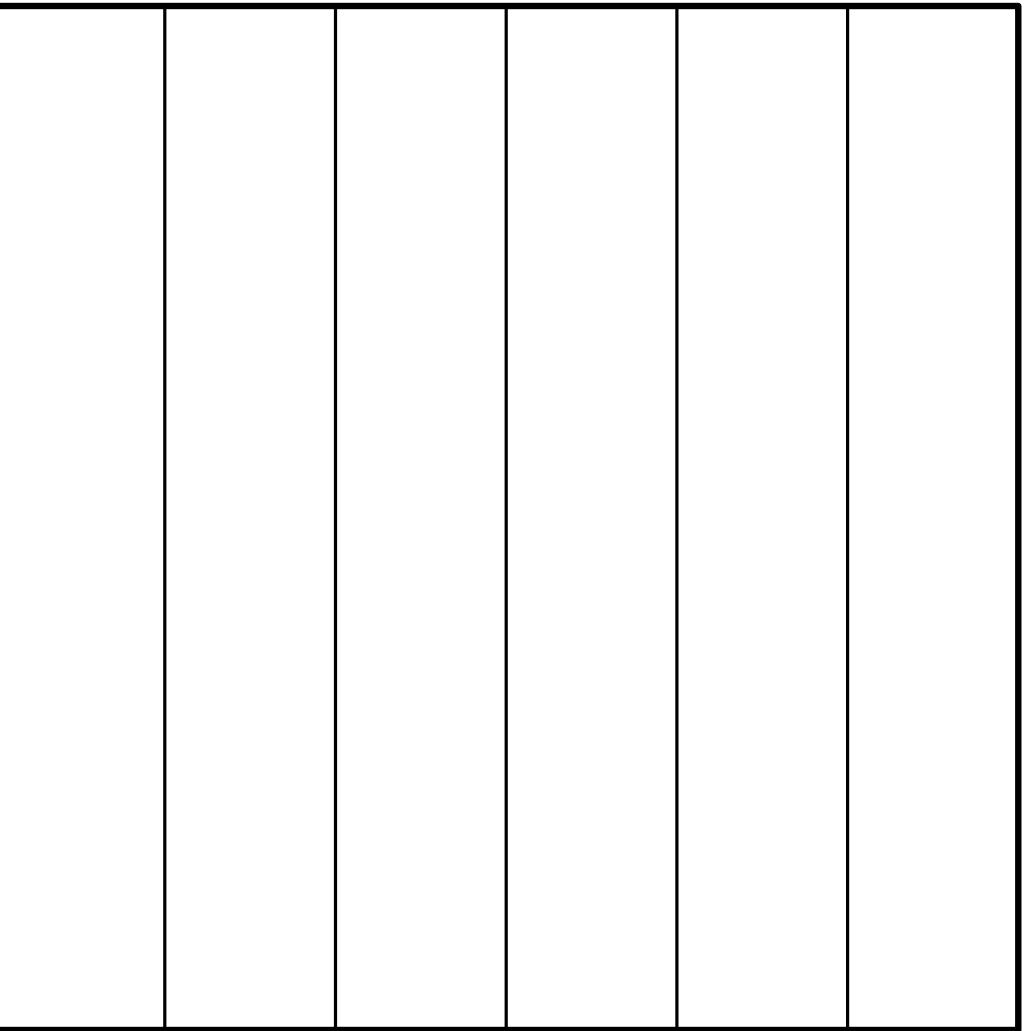
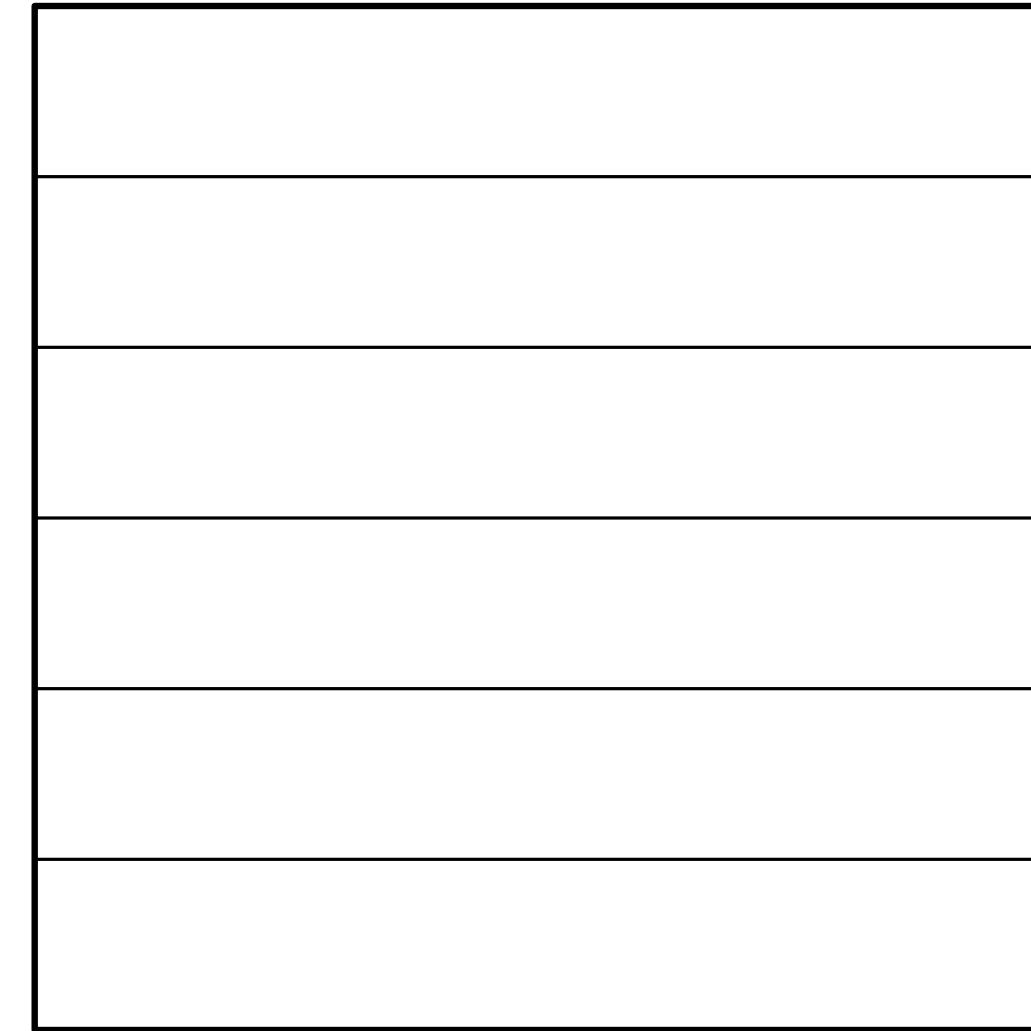
Observation 5: $|R_n(\top, \perp, \vdash)| = n$ and $|R_n(\top, \perp, \vdash, \dashv)| = 2$

Proofs: Construction of rectangulations



Observation 5: $|R_n(\top, \perp, \vdash)| = n$ and $|R_n(\top, \perp, \vdash, \dashv)| = 2$

Proofs: Construction of rectangulations



Summary

	Weak Equivalence	Strong Equivalence
\top		
\top, \perp		
\top, \vdash		
\top, \perp, \vdash		
$\top, \perp, \vdash, \dashv$		

Summary

Weak Equivalence

Strong Equivalence

\top	$ R_n^w(\top) = C_n$	$ R_n^s(\top) = I_n(110, 210, 010, 120) $
\top, \perp		
\top, \vdash		
\top, \perp, \vdash		
$\top, \perp, \vdash, \dashv$		

Summary

	Weak Equivalence	Strong Equivalence
\top	$ R_n^w(\top) = C_n$	$ R_n^s(\top) = I_n(110, 210, 010, 120) $
\top, \perp	$ R_n^w(\top, \perp) = 2^{n-1}$	Bijection to rushed Dyck paths
\top, \vdash		
\top, \perp, \vdash		
$\top, \perp, \vdash, \dashv$		

Summary

Weak Equivalence

Strong Equivalence

\top	$ R_n^w(\top) = C_n$	$ R_n^s(\top) = I_n(110, 210, 010, 120) $
\top, \perp	$ R_n^w(\top, \perp) = 2^{n-1}$	Bijection to rushed Dyck paths
\top, \vdash		$ R_n(\top, \vdash) = 2^{n-1}$
\top, \perp, \vdash		
$\top, \perp, \vdash, \dashv$		

Summary

Weak Equivalence

Strong Equivalence

\top	$ R_n^w(\top) = C_n$	$ R_n^s(\top) = I_n(110, 210, 010, 120) $
\top, \perp	$ R_n^w(\top, \perp) = 2^{n-1}$	Bijection to rushed Dyck paths
\top, \vdash		$ R_n(\top, \vdash) = 2^{n-1}$
\top, \perp, \vdash		$ R_n(\top, \perp, \vdash) = n$
$\top, \perp, \vdash, \dashv$		$ R_n(\top, \perp, \vdash, \dashv) = 2$

Summary

Weak Equivalence

Strong Equivalence

\top	$ R_n^w(\top) = C_n$	$ R_n^s(\top) = I_n(110, 210, 010, 120) $
\top, \perp	$ R_n^w(\top, \perp) = 2^{n-1}$	Bijection to rushed Dyck paths
\top, \vdash		$ R_n(\top, \vdash) = 2^{n-1}$
\top, \perp, \vdash		$ R_n(\top, \perp, \vdash) = n$
$\top, \perp, \vdash, \dashv$		$ R_n(\top, \perp, \vdash, \dashv) = 2$

THANK YOU!